
39

Conditional Contextual Refinement

YOUNGJU SONG, Seoul National University, Korea & MPI-SWS, Germany

MINKI CHO, Seoul National University, Korea

DONGJAE LEE, Seoul National University, Korea

CHUNG-KIL HUR, Seoul National University, Korea

MICHAEL SAMMLER,MPI-SWS, Germany

DEREK DREYER,MPI-SWS, Germany

Much work in formal verification of low-level systems is based on one of two approaches: refinement or

separation logic. These two approaches have complementary benefits: refinement supports the use of programs

as specifications, as well as transitive composition of proofs, whereas separation logic supports conditional

specifications, as well as modular ownership reasoning about shared state. A number of verification frameworks

employ these techniques in tandem, but in all such cases the benefits of the two techniques remain separate.

For example, in frameworks that use relational separation logic to prove contextual refinement, the relational

separation logic judgment does not support transitive composition of proofs, while the contextual refinement

judgment does not support conditional specifications.

In this paper, we propose Conditional Contextual Refinement (or CCR, for short), the first verification

system to not only combine refinement and separation logic in a single framework but also to trulymarry them

together into a unified mechanism enjoying all the benefits of refinement and separation logic simultaneously.

Specifically, unlike in prior work, CCR’s refinement specifications are both conditional (with separation

logic pre- and post-conditions) and transitively composable. We implement CCR in Coq and evaluate its

effectiveness on a range of interesting examples.

CCS Concepts: • Theory of computation→ Logic and verification; Separation logic.

Additional Key Words and Phrases: contextual refinement, separation logic, Coq, verification

ACM Reference Format:

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional

Contextual Refinement. Proc. ACM Program. Lang. 7, POPL, Article 39 (January 2023), 31 pages. https://doi.

org/10.1145/3571232

1 INTRODUCTION

In recent years, great progress has been made on the problem of formally verifying correctness of
complex, low-level software systems with machine-checked proof [Klein et al. 2009; Appel 2014;
Gu et al. 2011, 2016]. Much work in this space is based on one of two approaches: refinement or
separation logic. In this paper, we argue that these two approaches in fact have complementary
benefits, and thus it is worth exploring how to marry them together in a single framework. We
propose such a framework, which we call Conditional Contextual Refinement (CCR), and we

Authors’ addresses: Youngju Song, Seoul National University, Korea & MPI-SWS, SIC, Germany, youngju@mpi-sws.org;

Minki Cho, Seoul National University, Korea, minki.cho@sf.snu.ac.kr; Dongjae Lee, Seoul National University, Korea,

dongjae.lee@sf.snu.ac.kr; Chung-Kil Hur, Seoul National University, Korea, gil.hur@sf.snu.ac.kr; Michael Sammler, MPI-

SWS, SIC, Germany, msammler@mpi-sws.org; Derek Dreyer, MPI-SWS, SIC, Germany, dreyer@mpi-sws.org.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART39

https://doi.org/10.1145/3571232

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

http://creativecommons.org/licenses/by-nd/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-7093-3824
HTTPS://ORCID.ORG/0000-0002-6684-0921
HTTPS://ORCID.ORG/0000-0003-2576-1220
HTTPS://ORCID.ORG/0000-0002-1656-0913
HTTPS://ORCID.ORG/0000-0003-4591-743X
HTTPS://ORCID.ORG/0000-0002-3884-6867
https://doi.org/10.1145/3571232
https://doi.org/10.1145/3571232
https://orcid.org/0000-0001-7093-3824
https://orcid.org/0000-0002-6684-0921
https://orcid.org/0000-0003-2576-1220
https://orcid.org/0000-0002-1656-0913
https://orcid.org/0000-0003-4591-743X
https://orcid.org/0000-0002-3884-6867
https://doi.org/10.1145/3571232
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571232&domain=pdf&date_stamp=2023-01-11

39:2 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

demonstrate its utility on a range of representative examples. But before we get to CCR, let us
begin with a brief overview of what refinement and separation logic bring to the table.

1.1 Refinement vs. Separation Logic

Common to essentially all approaches to program verification is the idea that we have a program
(or program component) we wish to verify—call it the implementation—and we wish to show that
it satisfies some formal specification. However, two key axes along which different verification
methods differ—and in particular, how methods based on refinement vs. separation logic differ—are:

(1) how the specification is formalized, and
(2) the sense in which the verification method is compositional.

Separation logic. Separation logic is an extension of Hoare logic; as such, it specifies program
components � (rather than whole programs) using a precondition % and postcondition & , written
{%} � {&}. The precondition % specifies the assumption that � makes about its program context
and the starting state in which it is executed, and the postcondition & specifies the guarantee �
makes about the final state after it has executed. A key benefit of this approach is that it enables us
to verify the correctness of a component � even if � only satisfies a conditional specification—i.e., �
only behaves correctly under certain conditions (say, when G is a pointer to a well-sorted linked list,
or when some initialization routine has been run before � is executed).

In terms of compositionality, separation logic goes beyond Hoare logic by additionally equipping
the assertions % and & with the ability to talk about ownership of resources (e.g., memory) that are
transferred to � from its context (in %) and back to its context (in &). This in turn is essential for
supporting modular reasoning about shared state: when� operates on a piece of state (e.g., memory)
that is shared with its program context, the ownership model of separation logic assertions can
dramatically simplify reasoning about potential interference between � and its context. And even
ignoring the program context, ownership reasoning can also be helpful in modularly decomposing
the verification of � itself—e.g., if, say, � spawns several threads manipulating shared state, each of
which we wish to verify separately without considering all concurrent interleavings.

Refinement. In contrast, refinement formalizes the specification of a program (or program
component1) as itself another (higher-level) program: in order to verify that the implementation
program � satisfies the specification represented by the program (, we show that the set of possible
behaviors exhibited by � refines (i.e., is included in) the set of possible behaviors exhibited by (,
written � ⊑ (. One key benefit of refinement is that, by representing the specification (as a program
rather than as a logical formula, refinement supports verification even in cases where we either (1)
lack a logic rich enough to express � ’s behavior or (2) want to express the end-to-end result of our
verification in terms that an external user can understand (i.e., using code, rather than an assertion
in a bespoke logic known only to verification experts).
In terms of compositionality, an advantage of refinement is transitive composition of proofs:

one can conduct the verification of � ⊑ (compositionally by introducing = mediating programs
"1, . . . , "= , which gradually refine the behavior of the program � until it reaches the specification (—
i.e., � ⊑ "1 ⊑ . . . ⊑ "= ⊑ (; then, by transitivity, one obtains � ⊑ (. The gradual refinement afforded
by transitivity lets one focus on orthogonal aspects of � separately—e.g., one step of a refinement
proof might deal with how � represents a data structure in memory, while another step might focus
on the higher-level functional correctness of � ’s algorithm. Moreover, transitivity supports proof
reuse, since refinement proofs can share “common legs”—the proofs of �1 ⊑ (, . . . , �= ⊑ (might all
go through a common mediating" (such that �1 ⊑ ", . . . , �= ⊑ "), reusing the proof that" ⊑ (.

1Some refinement-based approaches support verification of modular program components, while others concern only whole

programs. We use the term “program” here loosely to refer to both.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:3

In summary:

• Separation logic supports conditional specifications and modular reasoning about shared state.
• Refinement supports programs as specifications and transitive composition of proofs.

It is therefore quite natural to ask:

Can we marry the complementary benefits of refinement and separation logic in one framework?

Marrying separation logic and refinement. We are certainly not the first to ask this question.
In particular, a number of verification frameworks [Liang and Feng 2016; Turon et al. 2013; Gäher
et al. 2022; Frumin et al. 2021a] have employed separation logic in conjunction with refinement.
However, what the existing work in this space has not done so far is to truly synthesize separa-
tion logic and refinement into a unified method providing all the benefits each method enjoys
individually.
Consider, for example, the main judgment in Simuliris [Gäher et al. 2022]: it takes the form
{%} � ≤ ({&}—where here % and & can talk about (and relate) the states of both � and (. This
relational separation logic judgment has the advantage that it lets one place precise ownership-based
conditions on when � refines (. Furthermore, for certain restricted choices of % and& , this judgment
implies contextual refinement (� ⊑ctx (), a strong property that says � refines (when placed in
an arbitrary (well-formed) program context C. Hence, on the one hand, Simuliris uses relational
separation logic as an effective technique for establishing contextual refinement. Yet the benefits of
separation logic and refinement here are kept separate. The relational separation logic judgment
{%} � ≤ ({&} is a conditional refinement, but it does not enjoy transitive composability; in contrast,
the contextual refinement � ⊑ctx (is transitively composable but it is also un-conditional (i.e., it
does not support placing precise conditions on the program context).

In this paper, we propose Conditional Contextual Refinement (or CCR, for short), the first
verification system to not only combine refinement and separation logic in a single framework
but also fuse their complementary benefits together in a unified mechanism. Specifically, unlike in
prior work, CCR’s refinement specifications are both conditional (with separation logic pre- and
post-conditions) and transitively composable. Furthermore, CCR is fully mechanized in the Coq
proof assistant. To give a sense of what CCR is capable of, we now present a concrete example.

1.2 Motivating Example

Consider the verification of a simple key-value storage module depicted in Fig. 1. The implemen-
tation �Map uses a pointer data to store an array mapping the integer keys to their values. This
array is initially NULL and initialized by the function init(sz: int) with an array consisting of
sz zeros (returned by calloc(sz)). The functions get and set retrieve and update, respectively,
the entry at a given index in the array. Finally, set by user updates an entry with the value given
by the user (i.e., that obtained via the system call input()).
Now we consider and compare two kinds of specifications of �Map, one using separation logic

and the other using refinement. First, in separation logic, we can introduce a points-to predicate
k ↦→Map v, asserting that the key k is a valid entry of the map and stores the value v. With k ↦→Map v,
the functions of �Map can be specified in terms of pre- and postconditions as shown in the rightmost
column of Fig. 1. Here, init allocates k ↦→Map 0 for each entry in the map. Note that the exclusive

token ?4=38=6 is consumed when calling init and thus encodes that init can only be called
once. Then get(k) returns v given k ↦→Map v, and set(k,v) updates k ↦→Map w to the new value v.
Note that set by user(k) updates k ↦→Map w to an unknown value that is given by the user.

On the plus side, it is well known that this kind of separation logic specification offers powerful
modular reasoning principles for verifying clients of �Map [Jung et al. 2018]. On the minus side, the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:4 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

(* module �Map *)
private data := NULL

def init(sz: int) ≡
data := calloc(sz)

def get(k: int): int ≡
return *(data + k)

def set(k: int, v: int) ≡
*(data + k) := v

def set_by_user(k: int) ≡
set(k, input())

(* module �Map *)
private map := (fun k => 0)

def init(sz: int) ≡
skip

def get(k: int): int ≡
return map[k]

def set(k: int, v: int) ≡
map := map[k← v]

def set_by_user(k: int) ≡
set(k, input())

(* pre & postconditions (Map *)
∀sz. { ?4=38=6 }

init(sz)

{∗:∈[0,sz) k ↦→Map 0}

∀k v. {k ↦→Map v}

get(k)

{A . A = v ∧ k ↦→Map v}

∀k w v. {k ↦→Map w}

set(k,v)

{k ↦→Map v}

∀k w. {k ↦→Map w}

set by user(k)

{∃v. k ↦→Map v}

Fig. 1. An implementation module �Map, its abstraction �Map, and its pre- and postconditions.

separation logic spec does not fully capture the behavior of the code itself. In particular, the above
specification of set by user(k) does not capture how the function interacts with the user.

Alternatively, under the refinement approach, we can specify �Map using a more abstract program
�Map (the middle column of Fig. 1), which fully captures the observable behavior of �Map. Specifically,
this abstraction �Map adequately retains the implementation’s interactions with its environment
(i.e., the system call input()) while at the same time abstracting away internal implementation
details (i.e., it abstracts the low-level memory-based representation of the map into a high-level
representation as a mathematical function from int to int).
On the plus side, thanks to transitivity, the refinement approach allows us to verify �Map incre-

mentally, in a stepwise fashion. For example, as we will see shortly, a refinement proof of �Map
against �Map, denoted �Map ⊑ �Map, can be established by introducing an intermediate abstraction
"Map and transitively composing the proofs of �Map ⊑ "Map and "Map ⊑ �Map. On the minus side,
however—and this is a big minus—the refinement doesn’t hold! To be specific, it only holds under
the condition that init is called only once, and that the other functions are only called after the call
to init and with index arguments that are in range. (Otherwise, the refinement would be broken,
since functions in �Map would raise errors while those in�Map would not.) This condition is of course
precisely what the separation logic specification for �Map enforces.

Conditional contextual refinement. As the above example makes clear, separation logic and
refinement are truly complementary methods. Separation logic supports the enforcement of precise
conditions on how a module is used, while refinement supports incremental stepwise verification
of the module (via transitivity) against a specification represented as code. How can we marry
these advantages in one mechanism?

To achieve this, we propose the notion of conditional contextual refinement (CCR). At a high level,
the idea of CCR is natural: we develop a notion of refinement that allows the imposition of precise
separation-logic conditions under which the refinement holds. For instance, in our motivating
example, we will be able to prove (Map ⊢ �Map ⊑ �Map, which establishes that �Map refines �Map under
the condition that the module is used according to the separation logic spec (Map. This conditional
refinement relation satisfies several key desiderata.
First, CCR’s conditional refinement supports modular reasoning as in separation logic. For

example, suppose that we have a client module of Map—call it CL for “client”—with an implemen-
tation �CL, an abstraction �CL, and conditions (CL. Then we want to modularly verify conditional

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:5

refinement for CL only relying on the separation logic specification (Map of Map and without need-
ing to reason directly about Map’s implementation �Map or abstraction �Map. In other words, we
want to prove (Map ∪ (CL ⊢ �CL ⊑ �CL, which is then composed with (Map ⊢ �Map ⊑ �Map to obtain
(Map ∪ (CL ⊢ �CL ◦ �Map ⊑ �CL ◦�Map (here, ◦ denotes the linking operator on modules). This kind of
composition is called horizontal composition. Moreover, such modular reasoning should be allowed
even in the presence of mutual dependence/recursion between modules.
Second, CCR’s conditional refinement allows incremental verification via transitive composi-

tion (sometimes known in the literature as vertical composition). For example, consider proving
(Map ⊢ �Map ⊑ �Map via the following intermediate abstraction "Map, which simply adds the field
size and the range checking code assume(0 ≤ k < size) to �Map:

(* module "Map *)

private map := (fun k => 0)

private size := 0

def init(sz: int) ≡
size := sz

def get(k: int): int ≡
assume(0 ≤ k < size)

return map[k]

def set(k: int, v: int) ≡
assume(0 ≤ k < size)

map := map[k← v]

def set_by_user(k: int) ≡
set(k, input())

Here, the command assume(0 ≤ k < size) triggers undefined behavior, rendering all possible
behaviors, if k is out of range. This facilitates a decomposition of the refinement into two steps.

In the first step, we show that thanks to the range checking, �Map refines"Map as long as init is
called at most once, a condition that is enforceable by the following simple specification (0

Map
:

∀sz. { ?4=38=60 } init(sz) {⊤}

∀k v. {⊤} get(k), set(k,v), set by user(k) {⊤}

Here, ?4=38=60 is an exclusive token like ?4=38=6, which is used in a similar manner as in the
original (Map. (The motivation for differentiating between ?4=38=60 and ?4=38=6 will be clarified in
§2.3). The verification of (0

Map
⊢ �Map ⊑ "Map then amounts to only proving data abstraction from

the memory-based representation of the map into the function-based representation assuming that
init is called at most once, but without bothering to prove that the module satisfies the functional
correctness properties specified in (Map.
In the second step, we show that "Map refines �Map under (Map.

2 This amounts to proving that
the module satisfies (Map, but based on the higher-level function-based representation rather than
the lower-level memory-based representation.

In order to cleanly formalize our notion of conditional refinement, as well as prove its horizontal
and vertical composition properties, CCR employs separation logic wrappers, a novel mechanism
for “operationalizing” the enforcement of separation logic specs. Concretely, CCR defines a notion
of a wrapper, written ⟨ (⊢ " ⟩, which converts" into a module that “self-enforces” the pre- and
postconditions of (at the points where" interacts with its program context. With these wrappers
in hand, CCR then can define conditional refinement as just a mode of use of the standard notion
of contextual refinement, denoted ⊑ctx, between wrapped modules:

(⊢ � ⊑ � ≜ � ⊑ctx ⟨ (⊢ � ⟩

This allows us to easily establish the horizontal and vertical composition of conditional refinement by
leveraging the fact that contextual refinement enjoys these properties by construction. Concerning
our example, we can verify �Map via the following chain of refinements, whose transitive composition
follows directly from the transitivity of contextual refinement:

�Map ⊑ctx ⟨ (0Map ⊢ "Map ⟩ ⊑ctx ⟨ (Map ⊢ �Map ⟩

2To be precise, we prove that the wrapped module ⟨ (0
Map
⊢ "Map ⟩ refines �Map under (Map. Wrapping is discussed below.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:6 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

Of course, this leaves the question of how exactly to define these separation logic wrappers. The
key challenge in defining such a wrapper is that separation logic reasoning involves non-trivial
cooperation across interacting modules, such as a transfer of resource ownership, which is not
readily observable in the program state. To tackle this challenge, we use a combination of angelic
and demonic non-determinism which is often called dual non-determinism. In prior work, this was
mainly studied in the context of game semantics [Back and Wright 2012; Koenig and Shao 2020]. In
CCR, we apply this idea instead as a way to express implicit resource transfer between the caller
and callee of a function, using non-deterministic choices of both parties.

In summary, we develop the theory of CCR, which fully fuses together the benefits of refinement
and separation logic in a unified mechanism. In this paper, we present the ideas and formalization
of CCR in detail, along with a variety of motivating examples (and others in the supplementary
material) involving shared-memory reasoning, mutual recursion, function pointers, and termination.

Structure of the paper. The rest of the paper is structured as follows. We first give an overview
of the main ideas of CCR by showing (semi-formally) how it applies to our motivating example
(§2). Next, we explain how CCR is formalized as a general verification framework. This is done
in two steps: we first present a general, language-agnostic module system we developed (§3), and
then develop the key definitions and meta-theory of the CCR framework (§4). The framework
presented in §4 is self-contained and sufficient to handle our motivating example. However, the
full-fledged CCR framework has additional features, which we motivate with further examples (§5).
The formalization for the full framework is given in the appendix [Song et al. 2022]. Finally, we
present an evaluation for our development (§6), discuss related work (§7) and future directions (§8).

2 MAIN IDEAS OF CCR

In this section, we will explain the key ideas behind the central mechanism of CCR, namely the
wrapper ⟨ (⊢ " ⟩. Toward this end, we will show (8) how the wrapper ⟨ (⊢ " ⟩ is defined
(i.e., how the implementation " is instrumented so as to enforce the pre- and postconditions of
(operationally), and (88) how we reason about the wrapper in conjunction with a simulation
argument in order to establish conditional contextual refinement. Specifically, we will demonstrate
that such a conditional refinement indeed enjoys the promised properties:modular reasoning (in the
sense that each module can be verified independently with separation logic pre- and postconditions),
and incremental verification in the sense that the verification of each module can be decomposed into
multiple stepwise refinements. Finally, we will also present (888) a (global) adequacy theorem—we
call it the Wrapper Elimination Theorem (WET)—which establishes that the wrappers we
introduce as part of conditional contextual refinement proofs can be safely erased at the level of a
whole-program verification.

In §2.1, we first discuss these three points with a simplified wrapper that only involves pure
conditions (i.e., without involving separation logic). Then, in §2.2–§2.4, we move on to the more
complex and interesting situation where the wrapper enforces separation logic conditions as well.

2.1 Stateless Conditional Refinement

To see how one can encode pure conditions, consider the following contrived yet illustrative
example consisting of two function implementations (�Sq, �Main) and their abstractions (�Sq, �Main):

(* module �Sq *)
def is_sq(x: int): int ≡

if (x < 0) error()

var r := ...

return r

(* module �Sq *)
def is_sq(x: int): int ≡

var r := ...

return r

(* module �Main *)
def main() ≡
var x := 16

var r := is_sq(x)

output(r)

(* module �Main *)
def main() ≡

var x := 16

var r := is_sq(x)

output(1)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:7

The function is sq(x) checks if x is a square number (elided here in the ... part), and returns 1
if so and 0 otherwise. In its implementation �Sq, if x is negative, it calls the system call error, but
this check is eliminated in its abstraction �Sq. The main function invokes is sq(16) and outputs
its result, which is abstracted to 1 in its abstraction �Main since 16 is in fact a square number.
Now, let us see whether we can prove �Sq ⊑ctx �Sq as a standard unconditional contextual

refinement. For this, we would need to show that for any value of the argument x, the two
implementations of is sq(x) in �Sq and �Sq are related by the simulation relation ≾ defined by
the following rules:

(STL)

T ↩→ T′ T′ ≾ S

T ≾ S

(STR)

S ↩→ S′ T ≾ S′

T ≾ S

(CALL)

∀F. r:=F ;T ≾ r:=F ;S

r:=5 (®E);T ≾ r:=5 (®E);S

(RET)

return E ≾ return E

Here, T denotes the “target” (or lower-level) side of the refinement, and S the “source” (or higher-
level) side of the refinement. T ↩→ T′ denotes the silent (deterministic) step of the code (or program
state) according to its small-step operational semantics. The first two rules say that one can freely
take silent steps on either side and then continue to show simulation between the resulting states.
The third rule says that at a function call point both sides should call the same function 5 with
the same arguments ®E and the resulting states for the same arbitrary return value F should be
simulated. The last rule says that at a return point both sides should return the same value.
As one can easily see, the simulation between �Sq and �Sq does not hold when x is negative

since error() is called in �Sq but not in �Sq. To make the refinement hold, we will therefore place a
condition on the contextual refinement. Furthermore, to demonstrate the potential for incremental
verification of this example (even though it is not really needed in such a simple example), we will
consider two possible conditional specifications. The first is the following spec, (0

Sq
, which is the

simplest possible condition ensuring that �Sq refines �Sq (by ruling out the case where x < 0):

∀x. {x ≥ 0} is sq(x) {⊤}

The second is the following spec, (Sq, which fully describes the behavior of the Sq module and is
thus an ideal spec for other modules in the program to rely on:3

∀x. {x ≥ 0} is sq(x) {A . A = 1 ⇐⇒ ∃8 . x = 8 ∗ 8}

Our goal now is to prove the conditional contextual refinement (Sq ⊢ �Sq ⊑ �Sq, which establishes
that �Sq refines�Sq when used by contexts that respect the specification (Sq. Recall that, as discussed
in §1.2, (Sq ⊢ �Sq ⊑ �Sq is encoded as an ordinary contextual refinement �Sq ⊑ctx ⟨ (Sq ⊢ �Sq ⟩, where
the “source” side of the refinement wraps the abstract implementation �Sq with the spec (Sq using
the “wrapper” ⟨ (Sq ⊢ �Sq ⟩. Our proof strategy is then to prove this refinement, but using the
wrapper with (0

Sq
as an intermediate step:

�Sq ⊑ctx ⟨ (
0
Sq ⊢ �Sq ⟩ ⊑ctx ⟨ (Sq ⊢ �Sq ⟩

Before proving this, though, let us first explain how the wrappers are encoded.

Encoding conditional wrappers. We encode the wrapper ⟨ (Sq ⊢ �Sq ⟩ following the approach
of Refinement Calculus [Back and Wright 2012] (see §7 for a more detailed comparison). The idea is
to encode the pre- and postconditions via assume and assert statements. Concretely, ⟨ (0

Sq
⊢ �Sq ⟩

3Note that the “A .” in the postcondition is a binder for the return value of is sq(x).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:8 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

and ⟨ (Sq ⊢ �Sq ⟩ are encoded as follows.

(* ⟨ (0
Sq
⊢ �Sq ⟩ *)

def is_sq(x: int): int ≡
assume(x ≥ 0)

var r := ...

assert(⊤)
return r

(* ⟨ (Sq ⊢ �Sq ⟩ *)

def is_sq(x: int): int ≡
assume(x ≥ 0)

var r := ...

assert(r = 1 ⇐⇒ ∃8 . x = 8 ∗ 8)
return r

The wrapper adds an assume with the precondition at the start of the function and an assert with
the postcondition at the end. The behavior of assume and assert is formally described by the
following simulation rules:

(ASMR)

% =⇒ T ≾ S

) ≾ assume(%);S

(ASTR)

% T ≾ S

T ≾ assert(%);S

(ASML)

% T ≾ S

assume(%);T ≾ S

(ASTL)

% =⇒ T ≾ S

assert(%);T ≾ S

The intuition behind these rules and their use in our wrappers is easiest to grasp from considering
the case—covered by rules (ASMR) and (ASTR)—where the assume or assert appears on the source
(right-hand) side of a refinement. In that case, assume(%) lets one assume % , which is why we use
assume in the encoding of wrappers to model preconditions; whereas assert(%) turns % into a
proof obligation, which is why we use assert in the encoding of wrappers to model postconditions.
Dually, as shown in rules (ASML) and (ASTL), these operators swap their roles (assume becoming
a proof obligation and assert becoming an assumption) when appearing on the target (left-hand)
side of a refinement. These rules are validated w.r.t. a trace-based model of computation in §3.2.
For now, however, it is easiest to understand the behavior of assume and assert axiomatically in
terms of the refinements they enable.

Proving refinement incrementally. As explained above, we are going to prove the desired
refinement for the Sqmodule in two stages: �Sq ⊑ctx ⟨ (

0
Sq
⊢ �Sq ⟩ and ⟨ (

0
Sq
⊢ �Sq ⟩ ⊑ctx ⟨ (Sq ⊢ �Sq ⟩,

which can then be combined to yield �Sq ⊑ctx ⟨ (Sq ⊢ �Sq ⟩.
For the first refinement, �Sq ⊑ctx ⟨ (

0
Sq
⊢ �Sq ⟩, the intuitive idea of the proof is that the presence

of the precondition x ≥ 0 in (0
Sq

ensures that the dynamic check x ≥ 0 in �Sq succeeds. More

formally, the proof proceeds as follows: for any value of x, by (ASMR) with assume(x ≥ 0), we
can assume the value x is non-negative; by (STL), we can skip the if-statement without calling
error() since x ≥ 0; by applying (STL) and (STR) in lock step without any interesting reasoning
we can reach after var r := ... with the same value for r since the implementations on both
sides are identical; by (ASTR), we can simply skip assert(⊤); finally we can conclude by (RET)
since the return values are the same. Note that here the only non-trivial verification is to prove the
absence of error() relying on the assumption x ≥ 0.

For the second refinement ⟨ (0
Sq
⊢ �Sq ⟩ ⊑ctx ⟨ (Sq ⊢ �Sq ⟩, the assumptions on the two sides of the

refinement match, so the only interesting part is showing that the result satisfies the postcondition
in (Sq. More formally, the proof proceeds as follows: for any value of x, by (ASMR) we can assume x
≥ 0 and then by (ASML) we need to prove x ≥ 0, which immediately follows from the assumption
we just made; similarly as before we can easily reach var r := ... with the same value for r
by applying (STL) and (STR) in lock step; by (ASTL) we can skip assert(⊤); then by (ASTR) we
need to prove r = 1 ⇐⇒ ∃8 . x = 8 ∗ 8 holds, which means basically proving that the code in
... correctly checks whether x is a square when x ≥ 0; finally we can conclude by (RET). Here
the only non-trivial verification is to prove the assert statement by (ASTR), which essentially
amounts to verification of �Sq against (Sq in Hoare logic.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:9

Using pre- and postconditions modularly. Now consider what happens when we want to
verify the Main module (see the beginning of this section), which is a client of the Sq module.
With the spec (Sq in hand, we can verify Main modularly (i.e., relying only on (Sq and without
needing to have access to its implementation). To do so, we will prove the conditional refinement
�Main ⊑ctx ⟨ (Sq ∪ (Main ⊢ �Main ⟩, where the source side of the refinement wraps the abstraction

�Main with two specs: the spec (Main = { {⊤} main() {⊤} } for Main, as well as the spec (Sq that is
assumed for Sq. This wrapping is encoded as follows:

def main() ≡ assume(⊤); var x := 16

assert(x ≥ 0); var r := is_sq(x); assume(r = 1 ⇐⇒ ∃8 . x = 8 ∗ 8)
output(1); assert(⊤)

Note that the precondition of is sq is asserted before the call and its postcondition is assumed
after the call, which means that during the simulation proof of �Main ⊑ctx ⟨ (Sq ∪ (Main ⊢ �Main ⟩,
by (ASTR) the condition x ≥ 0 needs to be proven (this is trivial since x = 16), and by (ASMR)
the condition r = 1 ⇐⇒ ∃8 . x = 8 ∗ 8 can be assumed, from which r = 1 follows (since
x = 16 = 4 ∗ 4); thus, both sides of the refinement call output(1), and the proof is done.

Eliminating wrappers. Now that we have verified the Sq module and the Main module sepa-
rately, we want to be able to put the proofs together into a verification of the whole program—i.e.,
to prove �Sq ◦ �Main ⊑beh �Sq ◦�Main, where ⊑beh is a notion of whole-program behavioral refinement
(roughly, trace refinement—see §3.2). To do so, we first rely on the horizontal compositionality of
contextual refinement, which says that we can compose our proofs of �Sq ⊑ctx ⟨ (Sq ⊢ �Sq ⟩ and
�Main ⊑ctx ⟨ (Sq ∪ (Main ⊢ �Main ⟩ to obtain a refinement for the linked program (where ◦ denotes
linking):

�Sq ◦ �Main ⊑ctx ⟨ (Sq ⊢ �Sq ⟩ ◦ ⟨ (Sq ∪ (Main ⊢ �Main ⟩

And since these are closed programs, this implies also the same with ⊑beh instead of ⊑ctx:

�Sq ◦ �Main ⊑beh ⟨ (Sq ⊢ �Sq ⟩ ◦ ⟨ (Sq ∪ (Main ⊢ �Main ⟩

But this is not quite what we want yet, because the source side of the refinement is cluttered
with wrappers. Thus, to get to our end goal, we need to eliminate the wrappers by proving:

⟨ (Sq ⊢ �Sq ⟩ ◦ ⟨ (Sq ∪ (Main ⊢ �Main ⟩ ⊑beh �Sq ◦ �Main

Fortunately, this falls out as an instance of a more general “adequacy” result of CCR, which we call
the Wrapper Elimination Theorem (WET).

The intuition behind the WET is simple: we should be able to eliminate these wrappers because
we have already shown that both modules satisfy their specs. A bit more formally, the key idea
of the proof is that in the linked program ⟨ (Sq ⊢ �Sq ⟩ ◦ ⟨ (Sq ∪ (Main ⊢ �Main ⟩, every assume(%)
will get executed immediately after a corresponding assert(%)4: either % is the precondition of a
function f and the assume(%) occurs at the beginning of the body of f, in which case the caller
of f must have done assert(%) right before calling it; or % is the postcondition of a function f

and the assume(%) occurs right after a call to f (on the caller’s side), in which case the body of f
must have done assert(%) right before returning to the caller. Thus, both can be eliminated by
repeatedly applying the following refinement (where is an arbitrary evaluation context):

 [assert(%); assume(%)] ⊑beh [skip]

This refinement is easily provable by applying (ASTL) followed by (ASML) at the condition state-
ments and otherwise applying (STL) and (STR) in lock step. CCR includes the machinery to
automatically apply this cancellation and thus eliminate the wrappers.

4Except for the trivial precondition ⊤ of Main.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:10 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

Note that theWrapper Elimination Theorem is only applicable to closed programs (and behavioral
refinement)—not open programs and contextual refinement—because for open programs it is not
sound in general to eliminate the conditions on the context. We describe the WET more formally
in Theorem 4.1 (§4.2).

2.2 Stateful Conditional Refinement via Separation Logic

We have just given an overview of how CCRworks in the simple case where pre- and postconditions
in specs are pure propositional formulae. In this and the following subsections, we describe how to
generalize this technique to handle conditions expressed in separation logic.

The high-level idea is simple: We define more elaborate versions of assume and assert—which
we call ASSUME and ASSERT—that work on separation logic assertions instead of pure propositions.
Recall, for instance, the example from §1.2, in which we wanted to prove �Map ⊑ctx ⟨ (

0
Map
⊢ "Map ⟩.

The wrapper on the right will be encoded by adding ASSUME and ASSERT statements, so that the
init function (for example) will look roughly as follows:

def init(sz: int) ≡ ASSUME(?4=38=60); size := sz; ASSERT(⊤)

This may look simple enough, but the devil is in the details: in particular, what does it even mean—
operationally—to assume or assert a separation logic condition?! Before we can explain this, though,
let us first begin by giving a short review of how separation logic assertions are modeled.

Model of separation logic. Consider the assertion ?4=38=60 . This assertion denotes ownership
of an exclusive resource called ?4=38=60, and in some sense the whole point of separation logic is to
provide a rich set of proof principles for reasoning modularly about ownership of such resources.

In separation logic, resources are usually modeled as (variants of) Partial Commutative Monoids

(PCMs). For our purposes, a PCM Σ
5 is a set equipped with a commutative and associative binary

operator + on Σ, called addition, an identity element Y, and a validity predicateV on Σ satisfying (8)
V(Y) and (88) ∀0, 1.V(0 +1) =⇒ V(0). Since the PCMs can be naturally composed via Cartesian
product, each module can pick its own PCM and then the whole system can be instantiated with
the global PCM, which is just a product of the PCMs used by each module.

A PCM Σ yields a notion of separation logic proposition which we call rProp
Σ

6, which is defined
simply as Σ → Prop. We define the logical connectives on rProp

Σ
following Jung et al. [2018].

Specifically, for an arbitrary rProp
Σ
% and & , a resource 0 ∈ Σ, and a Prop ', the connectives in

our example have the following definitions (where A ≥ 0 ≜ ∃1.A = 0 + 1):

0 ≜ _A . A ≥ 0 % ∗& ≜ _A . ∃0 1. A = 0 + 1 ∧ % 0 ∧& 1 ∃G . % ≜ _A . ∃G . % A ⌜'⌝ ≜ _ . '

For instance, in our running example, we use a PCM Σ
0
Map

(for (0
Map

) with the following elements:

?4=38=60 | Y |

Here, Y is the identity element, and all elements except are valid (i.e., satisfyV). The crucial part is

the definition of addition:We define ?4=38=60+?4=38=60 to result in ; thus, ?4=38=60 ∗ ?4=38=60
is false, which is the essence of what is meant when we say that ?4=38=60 is an “exclusive” resource:
if one module in the program owns ?4=38=60, then no other module can own another copy.
With our resource model in hand, we can state the fundamental invariant of separation logic:

The summation of all resources always are and should remain valid.

This invariant is the core rely/guarantee principle of separation logic. Specifically, a user of separa-
tion logic can rely on the summation of all current resources being valid, which means that if they
are verifying a module which locally owns a resource A , then they know that whatever “frame”

5In the development, we use a custom version of resource algebra ([Jung et al. 2018]) without step-indexing.
6We omit Σ when it is a referring to a global PCM.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:11

ASSUME(Cond) ≡ {

var f := take(Σ) (* L1 *)

assume(Cond f) (* L2 *)

ctx := take(Σ) (* L3 *)

assume(V(mrs + frs + f + ctx)) } (* L4 *)

ASSERT(Cond) ≡ {

var f := choose(Σ) (* R1 *)

assert(Cond f) (* R2 *)

(mrs, frs) := choose(Σ × Σ) (* R3 *)

assert(V(mrs + frs + f + ctx)) } (* R4 *)

(* �Map *)

private data := NULL

def init(sz: int) ≡

data := calloc(sz)

def get(k: int): int ≡
return *(data + k)

(* ⟨ (0
Map
⊢ "Map ⟩ *)

private map := (fun k => 0)

private size := 0

private mrs: Σ := Y

def init(sz: int) ≡
var (frs, ctx) := (Y, Y)

ASSUME(?4=38=60)
size := sz

ASSERT(⊤)

def get(k: int): int ≡
var (frs, ctx) := (Y, Y)

ASSUME(⊤)
assume(0 ≤ k < size)

var r := map[k]

ASSERT(⊤)
return r

(* ⟨ (Map ⊢ �Map ⟩ *)
private map := (fun k => 0)

private mrs: Σ := •_ .None

def init(sz: int) ≡
var (frs, ctx) := (Y, Y)

ASSUME(?4=38=6)
skip

ASSERT(∗:∈[0,sz) : ↦→Map 0)

def get(k: int): int ≡
var (frs, ctx) := (Y, Y)

var v := take(int)

ASSUME(k ↦→Map v)

var r := map[k]

ASSERT(r = v ∧ : ↦→Map v)
return r

Fig. 2. The implementation and condition-wrapped abstractions for Map (excerpt).

resource 5 is owned by the rest of the program, it must be the case that A is “compatible” with 5
(i.e.,V(A + 5)). At the same time, they must also guarantee that if they update the module’s local
resource to A ′, then they can only do so if A ′ remains compatible with 5 (i.e.,V(A ′ + 5)). This is
known in the separation logic literature as a “frame-preserving update” [Jung et al. 2018].

ASSUME and ASSERT. So how does this rely/guarantee principle of separation logic help with
defining ASSUME and ASSERT? The idea is simple: We use ASSUME to encode the rely condition,
while ASSERT encodes the guarantee condition. In particular, ASSUME assumes the validity of the
summation of all separation logic resources while ASSERT asserts their validity. These definitions
of ASSUME and ASSERT are shown at the top of Fig. 2. The key component of these definitions
is the assume (resp. assert) on line L4 (resp. R4) that assumes (resp. asserts) the validity of the
summation of “all” resources. To make this intuition more precise, we consider three questions: (i)
What constitutes “all” resources? (ii) How does the wrapper transform the code to allow ASSUME
and ASSERT to track these resources? (iii) How do we define ASSUME and ASSERT?
The first question (i) is what constitutes “all” resources. The answer is that the summation on

line L4 / R4 consists of the following resources:

• A module resource mrs: This is the resource owned privately by the current module—it is used to
state invariants about the private state of the module. This resource is scoped module-locally.
• A function resource frs: This is the resource owned privately by the current function—it is used
when reasoning about function calls (to other functions) to keep track of the local resources that
should be framed around the function call. This resource is scoped function-locally.
• A call/return resource f : This is the resource that is transferred to a function when calling it, or
back from it when the function returns. Line L2 (resp. R2) assumes (resp. asserts) Cond f to state
that f corresponds to the ownership of Cond.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:12 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

• A context resource, ctx: This resource corresponds to the “frame”—it represents the summation of
all other resources owned by other modules/functions besides the one we are currently verifying.

Now onto the second question (ii): how the wrapper transforms the code to track these resources.
The output of the wrapper ⟨ (Map ⊢ �Map ⟩ is shown in Fig. 2. Consider init: similar to the stateless
wrapper described in §2.1, the wrapper inserts an ASSUME statement to assume the precondition

(i.e., ?4=38=6) and an ASSERT statement to guarantee the postcondition (i.e.,∗:∈[0,BI) k ↦→Map 0).
Additionally, the wrapper inserts some boilerplate code (shown background-colored) to track the
module, function, and context resources. Concretely, the wrapper introduces a module-scoped
private variable to store the module resource mrs throughout the whole program’s lifetime, which
is initialized to the initial ownership of the module.7 Also, the wrapper introduces function-scoped
variables to store the function resource frs and the context resource ctx throughout the current
function’s lifetime, which are initialized to the unit of the PCM.

Now we are ready to consider question (iii) and look at the definition of ASSUME and ASSERT
in detail. To understand their definition, it is important to realize that each ASSUME on the callee
(resp. caller) side will be matched by a ASSERT on the caller (resp. callee) side that directly precedes
it in the execution of the program. (These matching ASSUME/ASSERT pairs will eventually be
cancelled out with the WET as described in §2.1.) With this in mind, let us look at the definitions of
ASSUME and ASSERT in Fig. 2, which employ two new operators, take and choose. Intuitively,
the lines L1-L4 of ASSUME(Cond) take a call/return resource f that the callee (resp. caller) is
receiving from the caller (resp. callee) (L1), as well as a context resource ctx representing the
“frame” (L3) and assume that f satisfies Cond (L2) and that the summation of all resources is valid
(L4). Dually, the lines R1-R4 of ASSERT(Cond) choose a call/return resource f that the caller (resp.
callee) is sending to the callee (resp. caller) (R1), as well as updated values for the caller’s (resp.
callee’s) module- and function-local resources, mrs and frs (R3), so long as we can guarantee that
f satisfies Cond (R2) and that the summation of all (updated) resources remains valid (R4).
We will soon see how these definitions of ASSUME and ASSERT play out when proving condi-

tional contextual refinements, but we first need to understand take and choosemore formally—i.e.,
what these operators do and how they allow resource transfer between the caller and callee.

Implicit value passing via dual non-determinism. As we described above, the definitions
of ASSUME and ASSERT make use of choose and take in order to transfer resources back and
forth between caller and callee. The reader may wonder, however, why we don’t simply pass
the resources as explicit arguments instead of introducing these new choose and take operators.
Indeed, a natural idea would be to add an additional argument to each function that corresponds to
the call/return resource f . However, recall that we are establishing contextual refinement: if we
are making any change to the argument/return value, the context will be able to differentiate it and
thus contextual refinement cannot hold. For instance, the following refinement where the source
adds explicit f argument does not hold

def f(x) ≡ 10 ̸⊑ctx def f(x, f) ≡ 10

because of the following context: def bad ctx() ≡ f(x, Y). This context linked with the target
side of the refinement leads to an undefined behavior since the number of arguments does not
match, but it can be linked with the source side without a problem.

Thus, what we need here is a mechanism that effectively gives an illusion of passing an additional
resource argument, but where the resource argument is not actually passed as a parameter. At a
high level, our insight is the following: As we have seen in §2.1, assume and assert can be seen as

7To be precise, the initial resource of each module (Y for"Map and (•_ .None) for �Map) should be given as an additional

parameter to the wrapper. For brevity, we will omit them in the wrapper notation when they are made explicit in the figure.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:13

allowing implicit passing of proofs of pre- and postconditions (i.e., the fact that the condition holds)
between caller and callee. The downside of assume and assert is that they can only be used to
pass logical proofs, not actual values. However, we can generalize the mechanism of assume and
assert to a more powerful one, dual non-determinism, that can be used to “assume” and “assert”
actual values, including separation logic resources!
In particular, we consider two kinds of non-determinism [Back and Wright 2012]: On the one

hand, there is so-called demonic non-determinism, corresponding to assert, which we denote
as choose(-). On the other hand, there is so-called angelic non-determinism, corresponding to
assume, which we denote as take(-). The easiest way to gain intuition for them is to consider
their simulation relation rules, which are analogous to the ones for assume and assert:

(CHR)

∃E ∈ - . T ≾ var x := E; S

T ≾ var x := choose(-); S

(TKR)

∀E ∈ - . T ≾ var x := E; S

T ≾ var x := take(-); S

(CHL)

∀E ∈ - . var x := E; T ≾ S

var x := choose(-); T ≾ S

(TKL)

∃E ∈ - . var x := E; T ≾ S

var x := take(-); T ≾ S

The rules, which we will validate w.r.t. an underlying trace model in §3.2, can be interpreted
as follows. Choosing on the right side of the refinement (CHR) requires providing a value for the
choice—just like an assert on the right side (ASTR) requires proving the assertion. Taking on the
right side (TKR) means receiving a value for the choice—i.e., similar to how assume on the right
side (ASMR) means assuming the assertion. As before, the rules for the left side are dual to those
for the right.

2.3 Incremental and Modular Verification of the Motivating Example

To properly illustrate how take and choose work, we now revisit the example from §1.2 and
demonstrate our wrappers in action: we will sketch how to incrementally prove �Map ⊑ ⟨ (

0
Map
⊢

"Map ⟩ ⊑ ⟨ (Map ⊢ �Map ⟩, and how to modularly verify a client of this library using the separation
logic spec, (Map. In the course of doing so, we will also see the role that each of the resources in the
encoding of ASSUME and ASSERT plays in the refinement verification. But first, before we dive
into the proof, let us set up some preliminaries.

Simulationwith relational invariant. Since modules are now equipped with their own private
states, we extend the previous (stateless) simulation relation with a notion ofmodule-local relational

invariant. Specifically, when proving a simulation between a pair of modules, one can fix up front a
relation Inv between the possible private states of the two (i.e., Inv ∈ P(statetgt × statesrc)). Then,
the simulation (i) allows one to rely on Inv whenever this pair of modules acquires control (i.e.,
at the beginning of the function and after a function call), and (ii) obligates one to guarantee Inv
holds whenever this pair of modules releases control (i.e., at the end of the function and before a
function call). Note that the private state of the modules includes both their physical private state
(i.e., module-local variables, like data and map in the Map example) and their module resources
(mrs, which is a kind of module-local ghost state that ASSUME and ASSERT manipulate). Indeed,
as we will see concretely below, a key purpose of the module-local relational invariant Inv is to
dictate how the modules’ private physical and ghost state relate to each other.

First refinement for Map. To prove �Map ⊑ ⟨ (
0
Map
⊢ "Map ⟩, we use the following module-local

relational invariant Inv0 between the private states of the two modules (i.e., data from the former
and map, size, mrs from the latter):

J⌜size = 0 ∧ map = (fun k => 0)⌝ ∨ (?4=38=60 ∗ data ↦→Mem map[0 : size])K(mrs)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:14 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

The invariant is a disjunction of two cases: the former (i.e., size = 0 ∧ map = (fun k => 0)) states
the relation before init is called, and the latter states the relation after init is called. In the former
case, the ?4=38=60 token is not contained within the module resource mrs, which means a client of
Map may have it and can use it to invoke init. In the latter case, the module resource mrs must

contain ?4=38=60—thus preventing a client from owning it and trying to invoke init again—and the
pointer data should point to an array with contents map[0 : size] (i.e., map[0], . . . , map[size-1]).
Intuitively, the points-to predicate ↦→Mem gives exclusive ownership of the memory it points to and
thus rules out interference by other modules. The way we model memory accesses and modularly
reason about them is presented in §5.2.

With the invariant Inv0, we can prove the refinement for each function by applying the simulation
rules and doing a case analysis on Inv0. We first note that, for the functions in Map module, one can
completely ignore the frs; it will be initialized as Y and remain the same all the time (i.e., we will
always choose it to be Y in R3). To see where frs gets used, see the proof of Main below.
Consider init. At the beginning, by the relational invariant we have mrs which satisfies Inv0,

and by simulation argument we are given some resource f (L1, TKR) which satisfies ?4=38=60
(L2, ASMR), so f ≥ ?4=38=60. We are then also givenV(mrs + f) (L4, ASMR), which means that
mrs cannot also contain ?4=38=60, so it must be in the uninitialized state (left disjunct). At the end
of init, we update f to Y and mrs to ?4=38=60 (R1, R3, CHR) so that Inv0 and the postcondition
are satisfied (R2, ASTR). We also check that this update maintains the validity of the sum of all
resources (L3, TKR, R4, ASTR)—i.e., that it is a “frame-preserving update”.
For get and set, a high-level proof is as follows: we know that the module is in the initialized

state (i.e., the latter case of Inv0) since in the former case with size = 0, the range checking
assume(0 ≤ k < size) fails and thus the refinement holds trivially. Then, thanks to the ownership
data ↦→Mem map[0 : size], we can prove that both source and target (i) (in case of get) retrieve the
same value, and (ii) (in case of set) update data and map equivalently, reestablishing Inv0.

Second refinement for Map. We now explain how to prove ⟨ (0
Map
⊢ "Map ⟩ ⊑ ⟨(Map ⊢ �Map ⟩,

the second refinement. The structure of the proof is largely similar to that of the first refinement, but
there is one new twist because the precondition of the spec (0

Map
on the target side of the refinement

poses a bit of a challenge: we must somehow discharge its precondition (in this case, ?4=38=60).

One way to discharge it would be to simply take ?4=38=60 as the precondition of (Map as well:
that way, we would get to ASSUME ownership of ?4=38=60 on the source side and then use it to
discharge the ASSUME on the target. However, if we did that, we could no longer actually use the
?4=38=60 token in the remainder of the proof, which would be a problem: we would have no way
to reason (in this proof) that init is only called once.
To solve this problem, we define (Map so that its precondition is the separating conjunction of

?4=38=60 (the precondition of (0
Map

) and a second token ?4=38=61, which enjoys the same exclusive

property (i.e., ?4=38=61 + ?4=38=61 is invalid). We then define ?4=38=6 to be ?4=38=60 + ?4=38=61.

By using ?4=38=6 (instead of ?4=38=60) as the precondition for the source side, we ensure that
(i) we can discharge the ASSUME on the target side using the ?4=38=60 component of ?4=38=6;
but (ii) even after giving up ?4=38=60, we will still be left with an exclusive token ?4=38=61 that
(together with the relational invariant we are about to define) we can use to establish that the
module is in the uninitialized state. Note, however, that a client of Map need not know this internal
technical detail of how ?4=38=6 is defined: to the client, it is just an exclusive resource.

We define the relational invariant Inv between the private states of the two modules (i.e., mapM,
size, mrsM from the former and mapA, mrsA from the latter) as follows:

J mrsM ∗ ⌜mapM = mapA⌝ ∗ •(mapA⟨0 : size⟩) ∗ (⌜size = 0⌝ ∨ ?4=38=61)K(mrsA)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:15

(* �Main *)

def main() ≡

var sz := 100

init(sz)

var k := 42

r := get(k)

output(r)

(* ⟨ (Map ∪ (Main ⊢ �Main ⟩ *)
private mrs: Σ := Y

def main() ≡
var (frs, ctx) := (Y, Y)

ASSUME(?4=38=6)
var sz := 100

ASSERT(?4=38=6); init(sz); ASSUME(∗:∈[0,sz) : ↦→Map 0)
var k := 42

var v := choose(int)

ASSERT(k ↦→Map v); r := get(k); ASSUME(r = v ∧ k ↦→Map v)
output(0)

ASSERT(∗:∈[0,sz) : ↦→Map 0)

Fig. 3. An implementation and its condition-wrapped abstraction for the client module, Main.

Here, let mapA⟨0 : size⟩ ≜ (fun k => if (0 ≤ k < size) then Some map(k) else None).
Inv says several things: (i) mrsA ≥ mrsM—as we will see shortly, this is needed to discharge the
validity condition in the target-side ASSUME; (ii) mapM and mapA coincide; (iii) mrsA contains the
resource •(mapA⟨0 : size⟩), which means that k ↦→Map v is only valid for 0 ≤ : < size and its
value v is equal to mapA[k]; and (iv) either size = 0 or mrsA contains ?4=38=61 (analogous to the
corresponding condition in Inv0).

With this invariant in hand, we can prove simulation for each function. At a high level, the proof
is straightforward: since"Map and �Map are identical except for the range checking, the verification
essentially amounts to the usual separation logic reasoning to prove that �Map satisfies (Map, plus a
few easy reasoning steps to rule out failure of the range checking in"Map. The most interesting bit
is how the connection between mrsM and mrsA is handled.
For space reasons, we just sketch the proof of init: After executing the ASSUME(?4=38=6)

in the source and quantifying over mrsA which satisfies the relational invariant, we learn that
mrsA ≥ mrsM + •(mapA⟨0 : 0⟩) along with the validity conditionV(mrsA + ?4=38=6 + ctxA). We
then execute ASSUME in the target by picking fM to be ?4=38=60, proving (trivially) that it satisfies

the precondition ?4=38=60 , picking ctxM to be ctxA + ?4=38=61 + •(mapA⟨0 : 0⟩), and proving
the validity condition for the target—V(mrsM + fM + ctxM)—which is implied directly from the
assumed validity condition for the source since all we did was shuffle the resources around.
At the end of the function, we execute ASSERT in the target, which gives us the updated

mrs′M and the validity conditionV(mrs′M + ctxM) (we ignore the return resource since the target
post is ⊤). We then execute ASSERT in the source by picking fA to be the resource satisfying

∗:∈[0,size) k ↦→Map 0, updating mrs′A to be mrs′M + ?4=38=61 + •(mapA⟨0 : size⟩), and proving the
validity conditionV(mrs′A + fA + ctxA). This validity condition is implied by the validity condition
from the target and the fact that the allocation of∗:∈[0,size) k ↦→Map 0 (and corresponding update
to •(mapA⟨0 : size⟩)) are frame-preserving updates (i.e., they preserve validity of composition with
any frame context). Finally, we have to reestablish the invariant, which is straightforward since
mapM and mapA are not modified and mrs′A contains mrs′M, •(mapA⟨0 : size⟩), and ?4=38=61.

Using pre- and postconditions modularly. Let us see now how to reason modularly about
a client of Map using (Map. The interesting bit here is that this proof involves an analogue of the
“frame rule” of separation logic, which (as we will see shortly) is operationalized in our wrappers
via the function resource frs.

The client module we consider here, given in Fig. 3, consists of a single function main. In the
implementation �Main, main initializes the Map module with size 100, retrieves the 42nd value, and
outputs the result. In the abstraction �Main, the output value is abstracted into the constant 0. We

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:16 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

define (Main as follows:

{ ?4=38=6 } main() {∗:∈[0,100) k ↦→Map 0}

In proving the refinement �Main ⊑ ⟨ (Map ∪ (Main ⊢ �Main ⟩, there is a point where we need to
reason about the call to get(42), which has the following spec:

{42 ↦→Map 0} get(42) {A . (⌜A = 0⌝ ∧ 42 ↦→Map 0)}

However, at that point in the proof, we know not only that 42 ↦→Map 0 but that k ↦→Map 0 for all
0 ≤ : < 100. So, what we want to do is frame � ≜ ∗:∈[0,42)∪[43,100) k ↦→Map 0 around the call to
get(42), effectively relying on the spec:

{� ∗ 42 ↦→Map 0} get(42) {A . � ∗ (⌜A = 0⌝ ∧ 42 ↦→Map 0)}

We represent this “frame” in CCR using the function resource frs, which is a function-scoped
local variable. Concretely, R3 of the Fig. 2 says that when executing the ASSERT(42 ↦→Map 0) in the
source (as precondition of get(42)), one needs to split its “current resources” (resources that are
disjoint from ctx) into: (i) f satisfying the condition 42 ↦→Map 0, (ii) mrs satisfying the relational
invariant, and (iii) frs, which will be defined as the frame � above. Then, when executing the
following ASSUME(&) in the source (where& is the postcondition A = 0∧42 ↦→Map 0), one is given
a new f ′ (satisfying &), a new module resource mrs′ (satisfying the relational invariant), a new
context resource ctx′, and the fact that mrs′ + frs + f ′ + ctx′ is valid. The “current resources” are
thus reconstituted, with frs and f ′ coming together to form ownership of the full key map again.

One point that we glossed over in the above explanation is how we handle auxiliary variables in
function specifications. In the case of get, for instance, the actual spec for get quantifies universally
over the value v that is stored at the k-th index. Here, v is an auxiliary variable in the spec because
it does not appear in the code (get(k)). We handle such a universally quantified auxiliary variable
again using dual non-determinism: on the caller side, that means we get to non-deterministically
choose the right value for v before ASSERTing the precondition. Dually, on the callee side, v is
chosen using take (see the body of get).

2.4 Wrapper Elimination

Recall that in §2.1, we concluded our discussion of stateless wrapper with a global adequacy
theorem, the Wrapper Elimination Theorem (WET), which shows how wrappers can be eliminated
once we have a closed whole program (e.g., ⟨ (⊢ "1 ⟩ ◦ ⟨ (⊢ "2 ⟩ ⊑beh "1 ◦"2). Similarly, we
conclude this section by sketching the proof of WET for separation logic wrappers. For expository
purposes, we show the proof in multiple gradual refinements.
In the first step, we eliminate R1/R2 and L1/L2 of neighboring ASSERT(%) and ASSUME(%)

statements (Fig. 2) with local reasoning as follows:

 [ASSERT(Cond); ASSUME(Cond)]

≡ [var f := choose(Σ); assert(Cond f);'34[f]; var f′ := take(Σ); assume(Cond f′); !34[f′]]

⊑beh [var f := choose(Σ); assert(Cond f);'34[f]; assume(Cond f); !34[f]]

⊑beh [var f := choose(Σ); '34[f]; !34[f]]

We first (i) unfold the definitions, where '34 and !34 refer to the combined lines R3/R4 and L3/L4,
(ii) turn implicit value passing between choose and take to explicit value passing so that the
resource f coincides on both sides (the proof is a simple application of the (TKL) rule), and (iii)
eliminate the matching assert and assume as done in §2.1.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:17

fundef(�) ≜ Any→ itree � Any - |2>=3 ≜ if 2>=3 holds, then - else ∅

EP (-) ≜ {Choose} ⊎ {Take} ⊎ {Obs 5= 0A6 | 5= ∈ string, 0A6 ∈ Any}|-=Any

EEMS (-) ≜ EP (-) ⊎ {Call 5= 0A6 |5= ∈ string, 0A6 ∈ Any}|-=Any ⊎ {Put 0 | 0 ∈ Any}|-=() ⊎ {Get}|-=Any

Mod ≜
{

(init, funs) ∈ Any × (string
fin
−−⇀ fundef(EEMS))

}

Mods ≜ list Mod ◦ ∈ Mods→ Mods→ Mods ≜ append

"B ⊑beh "B
′ ≜ Beh("B) ⊆ Beh("B′) " ⊑ctx "

′ ≜ ∀� ∈ Mods . � ◦" ⊑beh � ◦"
′

Fig. 4. Definitions of module and contextual refinement.

In the second step, we eliminate the remaining R3/R4 and L3/L4 with global reasoning as follows:

 [var f := choose(Σ);'34[f]; !34[f]]

≡ [var f := choose(Σ); (mrs, frs) := choose(Σ × Σ); assert(V(mrs + frs + f + ctx));

ctx′ := take(Σ); assume(V(mrs′ + frs′ + f + ctx′))]

⊑beh [var f := choose(Σ); (mrs, frs) := choose(Σ × Σ); assert(V(allrs)); assume(V(allrs))]

⊑beh [skip]

In this proof, we maintain the global invariant (see §2.2) that the summation of all module resources
in the program is valid. Moreover, while a module is executing, we enforce the invariant that its
context resource ctx is equal to the summation of the mrs and frs resources from all other modules
in the program. Then, when control is transferred to a different module in the program (e.g., at
the point where ctx′ is updated to take(Σ) above), we correspondingly update that module’s
context resource ctx′ (TKL) so that the global invariant is maintained. This means that, in the
proof above, both mrs + frs + f + ctx of the asserter and mrs′ + frs′ + f + ctx′ of the assumer
can be guaranteed to be equal to the summation of all resources in the system at the given moment,
named allrs. With this invariant in place, we can eliminate the matching assert and assume as
before, and conclude by removing the now-unused chooses.

In summary:

Dual non-determinism can give an illusion of value passing among cooperative modules.

3 EXECUTABLE MODULE SEMANTICS (EMS)

Before discussing the formal definition of the wrapper and the wrapper elimination theorem in the
next section, this section introduces CCR’s module system and its semantics.

3.1 Module and Contextual Refinement

As seen in the examples in the previous sections, programs in CCR are organized into modules that
combine functions with module-local state. We call this module system EMS (Executable Module
Semantics). Before we can introduce EMS formally, we must first review interaction trees [Xia et al.
2019] which are used extensively in the definition of EMS.

Interaction trees. For a given event type � : Set → Set and a return type) , an interaction
tree of type itree �) can be seen as an open small-step semantics that can (8) take a silent
deterministic step, (88) terminate with a return value of type) , or (888) trigger an event in � (-)
for some - and continues execution for each possible return value in - . Since itree � forms a
monad for any �, we henceforth use the monad notations: G← 8;: and 8 >>= : for bind and ret E

for return.
Interaction trees provide the following benefits: (8) they can be extracted to executable programs

in OCaml (thus “Executable”), (88) they provide useful combinators and theorems, and (888) the
monad notation serves as a shallow-embedded programming language in Coq, with which we
write the semantics of abstractions.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:18 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

ObsEvent ≜ {(Obs 5= 0A6, A4C) | 5= ∈ string, 0A6, A4C ∈ Any}

Trace
coind
= {4 :: CA | 4 ∈ ObsEvent, CA ∈ Trace} ⊎ {Term E | E ∈ Any} ⊎ {Diverge} ⊎ {Error} ⊎ {Partial}

Beh("B) ∈ P(Trace) ≜ beh(concat("B)) concat("B) ∈ itree EP Any ≜ ...

beh ∈ itree EP Any→ P(Trace) ≜ _8. {Partial} ∪ {Diverge}|8∈div ∪

match 8 with

|| tau >>= :⇒⇒ beh(: ()) || choose(-) >>= :⇒⇒
⋃

G∈- beh(: (G)) || take(-) >>= :⇒⇒
⋂

G∈- beh(: (G))

|| obs 5= 0A6 >>= :⇒⇒
⋃

A4C ∈Any (Obs 5= 0A6, A4C) :: beh(: (A4C)) |valid obs 5= 0A6 A4C || ret E⇒⇒{Term E} end

div ∈ P(itree EP Any)
coind
= { tau >>= : | : () ∈ div } ∪ { choose(-) >>= : | ∃G ∈ - . : (G) ∈ div } ∪

{ take(-) >>= : | ∀G ∈ - . : (G) ∈ div }

Fig. 5. Definitions of trace and behavior.

Function and module. Now we see how we define the notion of module, given in Fig. 4. The
semantic domain of EMS functions fundef(�) is given by meta-level functions that take an arbitrary
value (denoted by the type Any) as an argument and return an itree w.r.t. the event type � and the
return type Any. (Any can be understood as the set of all mathematical values.) Mod is the semantic
domain for a module, which is given by (8) the initial value of the module local state, init, and (88)
the definitions of the module’s functions, funs, with the event type EEMS. EEMS is the event type
for EMS consisting of (8) Choose and Take for nondeterministically choosing and taking a value
from any given set - , (88) Obs for triggering observable events (e.g., input, output), (888) Call for
making a call to (internal or external) functions, (8E) Get and Put for accessing the module local
state of type Any, The instructions choose(-) and take(-) are defined as an itree triggering
Choose(-) and Take(-), respectively. We use call 5= G to denote an itree triggering Call 5= G ,
and similarly for put, get and obs. Also, tau denotes the interaction tree taking a silent step and
immediately returns the unit value of the unit type.

Contextual refinement. Fig. 4 shows formal definition for the (whole-program) behavioral
refinement and contextual refinement. We say modules (Mods) to refer to a list of modules and
linking ◦ of modules is defined as list append. Throughout the paper we use implicit casting from
Mod to Mods as a singleton list.
Behavioral refinement between two modules" and" ′ is defined as set inclusion between the

set of possible traces given by Beh(-), which will be explained shortly (§3.2). Contextual refinement
between two modules " and " ′ is defined as behavioral refinement under an arbitrary context
modules � . As expected, this definition enjoys both vertical and horizontal compositionality:

(Vertical) � ⊑ctx " ∧" ⊑ctx � ⇒ � ⊑ctx �
(Horizontal) �1 ⊑ctx �1 ∧ �2 ⊑ctx �2⇒ (�1 ◦ �2) ⊑ctx (�1 ◦�2)

3.2 Traces and Behavior

As promised, we now present how we define the set of possible traces for a list of modules (Fig. 5).

Traces. To give the notion of behavior, we first define the set of traces, denoted Trace, coinduc-
tively. A trace is a finite or infinite sequence of ObsEvent (i.e., pairs of an observable event and
its return value) that can possibly end with one of the four cases: (8) normal termination with an
Any value, (88) silent divergence without producing any events, (888) erroneous termination, or (8E)
partial termination. The notion of trace is mostly equivalent to that of CompCert, except for the
partial termination. Partial termination will serve as a dual of erroneous termination: intuitively,
erroneous termination is terminating due to an error in the program, while partial termination is
due to the user (e.g., by killing the process via Ctrl+C).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:19

Behavior. The behavior Beh("B) for modules is defined in two steps. First, we concatenate
the computations described in each function semantics to create a single, large itree using the
standard concat combinator on interaction trees. Then, we define a set of possible traces for such
an itree (beh). The predicate beh(−) is defined by a mixed induction coinduction8 as follows,
where a dashed box denotes coinduction and a solid box denotes induction. For a given itree 8 ,
beh(8) includes the partial termination (Partial) since the program can be terminated by the user
at any point; the divergence (Diverge) if 8 is divergent according to the predicate div(−) defined
below; and the following depending on the first step of 8: (i) if 8 executes tau, the behaviors of its
continuation; (ii) if 8 executes choose, the union of the behaviors of each chosen continuation; (iii)
if 8 executes take, the intersection of the behavior of each taken continuation; (iv) if 8 executes an
observable event with 5= and 0A6, the union of the behaviors of each continuation : (A4C) prefixed
by (Obs 5= 0A6, A4C) for each valid return value A4C satisfying valid obs 5= 0A6 A4C9; and (v) if 8
returns a value E , the normal termination (Term E). Note that the erroneous termination (Error)
can only arise from take(∅). The divergence predicate div coinductively defines the set of those
itrees that take infinite steps without triggering any observable events, as shown in Fig. 5.
Though it is not our main contribution, our definition of beh(−) is novel in the sense that it

addresses (possibly) infinite traces and dual non-determinism at the same time. Previous work, to
our knowledge, considered dual non-determinism only for finite traces [Back and Wright 2012;
Koenig and Shao 2020], or considered (possibly) infinite traces but without dual non-determinism
(including the trace interpretation of itree [Xia et al. 2019]).

Commands and operators. Now, we define and discuss several derived commands/operators
that we use throughout the paper. First, UB and NB are defined as take(∅) and choose(∅), respec-
tively. Note that beh(UB) includes all the traces including Error, while beh(NB) includes only Partial.
Also we have the following duality:

(Prefix-closed) ∀8, C0, C1. C0 ++ C1 ∈ beh(8) =⇒ C0 ++ Partial ∈ beh(8)
(Postfix-closed) ∀8, C0, C1. C0 ++ Error ∈ beh(8) =⇒ C0 ++ C1 ∈ beh(8)

The prefix-closed property holds because Partial appears in the constructor of beh(−) uncondi-
tionally (Fig. 5). The postfix-closed property holds because Error never appears explicitly in the
definition of beh(−) but can only arise implicitly from executing take(∅) = UB. In particular,
take(∅) denotes the set of all traces (i.e., the unit of intersection), so if Error is a possible trace, all
other traces must be possible as well.
Next, we define the following operators:

assume(%) ≜ if % then () else UB x? ≜ match x with | Some(2) ⇒ 2 | ⇒ UB end

assert(%) ≜ if % then () else NB x! ≜ match x with | Some(2) ⇒ 2 | ⇒ NB end

For a proposition % , we define assume (resp. assert) to trigger UB (resp. NB) if % does not hold. The
two unwrap operators ? and ! extract the internal value of an option-typed value and result in UB

resp. NB on failure.

3.3 Simulation Relation

In CCR, we establish contextual refinement using a standard simulation technique. We have a
common simulation relation which relates a pair of an interaction tree (of type itree EEMS)
together with its module-private state (of type Any). Specifically, the simulation allows imposing
relational invariants, I, on the module-private states of both sides. An invariant I can depend on

8We use Paco library [Hur et al. 2013] in the formalization.
9Following CompCert, the parameter predicate valid obs specifies the possible return values of each observable event.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:20 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

g

↩→ ′ (BC, ′) ≲F0
S

(BC,) ≲F0
S

∀G ∈ - . (BC, G) ≲F0
S

(BC, G ← choose(-) ; G) ≲F0
S

∃G ∈ - . (BC, G) ≲F0
S

(BC, G ← take(-) ; G) ≲F0
S

T ≲F0
(BC, ′)

g

↩→ ′

T ≲F0
(BC,)

∃G ∈ - . T ≲F0
(BC, G)

T ≲F0
(BC, G ← choose(-) ; G)

∀G ∈ - . T ≲F0
(BC, G)

T ≲F0
(BC, G ← take(-) ; G)

(BC ′,) ≲F0
S

(BC, put BC ′;) ≲F0
S

(BC, BC) ≲F0
S

(BC, get >>=) ≲F0
S

T ≲F0
(BC ′,)

T ≲F0
(BC, put BC ′;)

T ≲F0
(BC, BC)

T ≲F0
(BC, get >>=)

F0 ⊑W F1 IF1
BCt BCs

(BCt, ret A) ≲F0
(BCs, ret A)

IF1
BCt BCs ∀A, F2, BC

′
t, BC

′
s . F1 ⊑W F2 ∧ IF2

BC ′t BC
′
s ⇒ (BC

′
t, t A) ≲F0

(BC ′s, s A)

(BCt, A ← call 5 G ; t A) ≲F0
(BCs, A ← call 5 G ; s A)

Fig. 6. Constructors for our common simulation relation (simplified).

Kripke-style possible worlds, i.e., an arbitrary typeW equipped with a preorder (⊑
W
). With these,

the simulation relation ≲F
10 at a given worldF ∈ W is coinductively defined (i.e., as a greatest

fixpoint) with constructors (rules) shown in Fig. 6.
The definition comprises constructors for: (8) executing a tau step, choose, and take in the left

side (first row), (88) executing the same for the right side (second row), (888) executing put and get
(third row), and (8E) executing function return and call (fourth row). (8) and (88) are unchanged from
the presentation in §2, and (888) is straightforward. For (8E) those constructors are now equipped
with worlds following the standard open simulations [Song et al. 2019]. That is, at each call or
return one needs to guarantee that I holds for some future worldF1. In return, at the beginning of a
function and after a function call, one can rely on the fact that there is some (future) worldF2 such
that I holds. Note that the simulation relation is meant to imply contextual refinement where the
context is completely arbitrary and can be reentrant to the module being verified (i.e., performing
mutual recursion). This is precisely the reason why I needs to be reestablished before all function
calls (see the first precondition of the rule for calls). Consequently, CCR supports mutual recursion
between different modules.11

The common simulation relation satisfies the following adequacy theorem.

Theorem 3.1 (Adeqacy). For a pair of modules"t and"s, a possible worldW, and a relational

invariant I w.r.t.W, if we have (i) ∃F0. IF0
"t .init "s .init, (ii) 3><("t.funs) = 3><("s .funs),

and (iii) for each pair of function 5t and 5s with the same name, ∀ E F BCt BCs . IF BCt BCs =⇒
(BCt, 5t E) ≲F (BCs, 5s E), the following holds:

"t ⊑ctx "s

4 CCR FRAMEWORK, SIMPLIFIED

In this section, we present the CCR framework, which formalizes ideas presented in §2. Specifically,
we show how to formally define the wrapper and the WET theorem for a basic (yet expressive

10We omit the stuttering index for brevity.
11It could seem restrictive that the invariant should be reestablished at every function call: for some function calls that are

known to not be reentrant, one may want to temporarily break the invariant. Fortunately, such reasoning is also supported

in CCR—without any extension to the core mechanism—by employing a well-known trick from separation logic (e.g., used

by the masks of Iris invariants [Jung et al. 2015, 2018]). That is, one can add an exclusive token - as a precondition to the

functions of a module" , which means that only functions with ownership of - can call functions of" . So if a function of

" calls another function without - in the precondition, there cannot be reentrancy and one does not have to reestablish

the invariant of " (technically, this works by adding a disjunction with - to the invariant of " so it can be trivially

reestablished by giving up -).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:21

rProp ≜ Σ→ Prop for Σ ∈ PCM

Cond ∋ B ≜ { (W, P, Q) | W ∈ Set ∧ P, Q ∈ W→ Any→ rProp}

Conds ∋ (≜ string
fin
−⇀ Cond

⟨ (⊢U " ⟩ ≜ ((".init, U), _ 5= ∈ dom(".funs) .WrapF((, (5=, ".funs 5=))

(* defined only when dom(".funs) ⊆ dom(() *)

WrapC((W, P, Q), ctx, 5=, G) ≜

(*C1*) F ← choose(W);

(*C2*) frs ← ASSERT(P(F),G,ctx);

(*C3*) A ← call 5= G;

(*C4*) ctx ← ASSUME(Q(F),A,frs);

(*C5*) ret (A, ctx)

WrapF((, (W, P, Q), 5 ∈ fundef(EEMS)) ≜ _ G.

(*F1*) F ← take(W); ctx ← ASSUME(P(F), G, Y);

(*F2*) (A, ctx) ← 5 (G)[Call 5= G ↦→ _ ctx. WrapC(((5=)!, ctx, 5=, G),

(*F3*) Put mps ↦→ _ ctx. (, mrs) ← get; put (mps, mrs); ret ((), ctx),

(*F4*) Get ↦→ _ ctx. (mps,) ← get; ret (mps, ctx)](ctx);

(*F5*) () ← ASSERT(Q(F), A, ctx); ret A

ASSUME(Cond, GA, frs) ≜

f ← take(Σ);

assume(Cond GA f);

ctx ← take(Σ); (, mrs) ← get;

assume(V (mrs + frs + ctx + f));

ret ctx

ASSERT(Cond, GA, ctx) ≜

f ← choose(Σ);

assert(Cond GA f);

(mrs, frs) ← choose(Σ × Σ); (mps,) ← get; put (mps, mrs);

assert(V (mrs + frs + ctx + f));

ret frs

Fig. 7. Definition of the wrapper.

enough to handle the running example) version of CCR. Additional advanced features will be
presented in subsequent sections.

4.1 Condition Wrapped Abstractions

At the heart of CCR framework is the wrapper, ⟨ (⊢U " ⟩. Its formal definition is given in Fig. 7.
The whole framework is parameterized with a global PCM, Σ. For each function, we specify its
condition B ∈ Cond consisting of three components (W, P, Q) each standing for the type of auxiliary
variable and pre- and postconditions. The auxiliary variableF [Schreiber 1997; Kleymann 1999] is
shared between P and Q (e.g., v in the specification of get in Fig. 1). The passing ofF ∈ W from a caller
to a callee is also encoded via choose and take as we have seen in Fig. 2 for v in the specification
of get. P(F) resp. Q(F), given F ∈ W, specify a separation logic pre- resp. postcondition on the
concrete argument resp. return value. A collection of conditions (∈ Conds collects such conditions
for a finite set of functions. The wrapper ⟨ (⊢U " ⟩ for a module M, conditions (, and an initial
module resource U is again a module with its initial private state now paired12 with the initial
module resource U , and its functions wrapped via WrapF. In Fig. 7 and hereafter, we will implicitly
cast between Any and a certain type such as Σ. Casting failures in the wrapper are technically
defined as UB, but they are spurious (they never acutually happen) and get eliminated in the WET.

Inserting conditions. In Fig. 7, we wrap (8) each function definition by inserting a precondition
at the beginning and a postcondition at the end (WrapF), and (88) each function call by inserting
a precondition before the call and a postcondition after the call (WrapC). WrapF is parametrized
by the conditions (for outgoing function calls, the condition (W, P, Q) of the function to wrap,
and the definition 5 of the function. WrapF generates a function that takes the auxiliary variable,
ASSUMEs the precondition (F1), executes the function body 5 with the given argument G (F2-4),
and ASSERTs the postcondition and returns (F5).
In lines F2-4, we use a combinator of interaction trees with type:

itree �) → (∀- . � (-) → () → itree �′ (- × ())) → () → itree �′ () × ())

It takes an itree 8 ∈ itree �) , adds a local state of type () , and interprets each event in � as an
itree in a new event type �′ that can access and update the local state. In our case, such a local state

12The Any type provides a pair operator of type Any→ Any→ Any and a split operator of type Any→ option(Any × Any) .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:22 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

will store the context resource ctx, which was stored in a function-local variable in pseudocode of
the previous examples. We use the notation 8 [41 ↦→ _B. C1, . . . , 4= ↦→ _B. C=] (B0) to denote the resulting
itree when the combinator is applied to an itree 8 , with an initial local state B0, by interpreting each
event 48 to an itree C8 for a given local state B . We omit the events that are interpreted identically,
and the state component when it is the unit type.
Now we can discuss lines F2-4 in more detail. In line F2, whenever a function call (i.e., Call

event) is made, it is wrapped by the wrapper WrapC with the callee’s condition in (. Specifically,
WrapC chooses the auxiliary variable (C1), ASSERTs the precondition (C2), makes the intended
function call (C3), ASSUMEs the postcondition (C4), and returns (C5). Lines F3-4 make sure that 5
accesses the correct private state. Recall that a module’s private state is now a pair of a physical
state (used by the module) and a module resource (used by the wrapper). The lines F3-4 simply
convert the Put/Get to access the first element of the pair.

Encoding conditions. The formal definitions of ASSUME and ASSERT in Fig. 7 are basically
the same as those presented in Fig. 2. The only difference is that ctx and frs, which were stored
in function-local variables in the pseudocode, are now explicitly threaded through. Concretely, the
ctx taken at the ASSUME in line F1, is passed to the ASSERT in line C2 or F5 via the interpretation
combinator. Similarly, the ctx taken at the ASSUME in line C4 is passed to line C2 or F5. Also, frs
is explicitly passed from line C2 to line C4.

4.2 Key Theorems of CCR

Nowwe are ready to formally state theWET theorem (described in §2) that removes those wrappers.

Theorem 4.1 (Wrapper Elimination Theorem (WET)). For a global PCM Σ, wrapped abstractions

⟨ (⊢U8 �8 ⟩ for 8 ∈ {1, ... , =} and an initial resource U to main that satisfies its precondition and

V(U +U1 + . . . +U=), if �1 ◦ . . . ◦�= is a closed program:

⟨ (⊢U1 �1 ⟩ ◦ . . . ◦ ⟨ (⊢U= �= ⟩ ⊑beh �1 ◦ . . . ◦�=

The validity condition ensures that the summation of all resources at the beginning of the
program is valid. We also have the following extensionality theorem.

Theorem 4.2 (Extensionality). For any (, (′, �, U, (�, the following holds:

(⊆ (′ =⇒ ⟨ (⊢U � ⟩ ⊑ctx ⟨ (
′ ⊢U � ⟩

Although Theorem 4.1 can be applied to arbitrary abstractions, if we consider the special case
where the abstractions are trivially safe programs, CCR behaves similarly to a standard unary
separation logic. To be specific, we define a special module Safe (=Bin, =Bout), which defines functions
with names in =Bout that non-deterministically invoke arbitrary functions in =Bin with arbitrary
arguments an arbitrary (finite or infinite) number of times. Then, we have:

Lemma 4.3 (Safety). For =B ⊆ =B1 ⊎ . . . ⊎=B= , Safe (=B, =B1) ◦ . . . ◦ Safe (=B, =B=) produces no Error.

This lemma holds since the whole program only consists of internal function calls and the
precondition ensures that all invoked functions exist. Combining Lemma 4.3 and Theorem 4.1 leads
to the following corollary, showing how CCR can be used to prove safety of programs:

Corollary 4.4 (SL). Given a global PCM Σ, (�8 , U8) for 8 ∈ {1, ... , =}, =B ⊆ dom(�1.funs) ⊎ . . . ⊎
dom(�=.funs), and an initial resource U to main satisfying its precondition and V(U +U1 + . . . +U=),

(∀8 . �8 ⊑ctx ⟨ (⊢U8 Safe (=B, dom(�8.funs)) ⟩) =⇒ �1 ◦ . . . ◦ �= produces no Error.

Proving �8 ⊑ctx ⟨ (⊢U8 Safe (=B, dom(�8.funs)) ⟩ essentially amounts to verifying �8 against (in
separation logic, and Corollary 4.4 mirrors the corresponding adequacy result of separation logic.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:23

5 MORE EXAMPLES AND FEATURES

In this section, we present advanced features of CCR with motivating examples. The formalization
of the full version of CCR is given in the appendix [Song et al. 2022].

5.1 Cancellable Calls

Consider the following example where, in the implementation side (left), function f calls fib with
argument 10 and outputs the result, and in the abstraction side (right), f directly outputs 55.

def f() ≡ var x := fib(10); output(x) ̸⊑ctx ⟨ (⊢ def f() ≡ output(55) ⟩

One would expect this contextual refinement to hold if one assumes a suitable Hoare triple (
for fib, e.g., stating that it returns the n-th fibonacci number. However, there is a problem: This
refinement eliminates a call to an unknown function (fib), which may interact with the user (e.g.,
via output), and thus may not hold in general. One workaround for this problem is to always put
matching function calls in the abstraction. For example, if we change the code of the abstraction
into fib(10); output(55), the refinement would hold. However, we would like to eliminate such
spurious function calls at the top-level.

CCR supports this with the following features: (8) we support a mechanism to specify whether
a function call is “cancellable” (defined below) and remove those in the WET, and (88) we allow
the user to omit those cancellable function calls when writing an abstraction. Note that the same
function may be cancellable or not depending on its argument and thus cancellability is a property
of a function call instead of a function definition. First, let us consider what makes a function call
cancellable. Pure function calls, i.e., function calls that does not trigger any visible event (including
Diverge) and does not modify any state, are clearly cancellable. The class of cancellable functions
is slightly larger: we allow cancellable calls to modify resources which anyway get removed by the
WET. In other words, cancellable calls are those function calls that become pure after eliminating
conditions and resources. Then, those pure calls can also be removed by WET.

Now, how do we specify and enforce the notion of cancellability? To enforce that a function does
not trigger visible events or modify the physical state, CCR imposes a simple syntactic restriction
(to be described in more detail shortly). A more interesting question is how to enforce that a
cancellable function call terminate, as diverging function calls are not cancellable. For this, we add
a new component D(F) to Cond (Fig. 7), where D(F), given F ∈ W, specifies the maximum call
depth. Specifically, a depth 3 ∈ Depth is either∞ denoting the call is not specified as cancellable, or
an ordinal ⟨>⟩ denoting the call is cancellable and has a maximum call depth > . In particular, a call
with depth ⟨>⟩ is only allowed to call functions with depth strictly smaller than > . Those conditions
together allows WET to remove those cancellable calls, solving the issue (8) above.

As an example, the above fib function can have the following specification:

∀= : N. {_ G. ⌜= < INTMAX ∧ G = =⌝} {_ A . ⌜A = 581<0Cℎ(=)⌝} {⟨=⟩}

where N and the three components in the curly brackets correspond to (W, P, Q, D) ∈ Cond, respec-
tively. The pre- and postconditions state that given a non-negative = ∈ N, the return value for
fib(n) is specified as the n-th fibonacci number (denoted by a mathematical function).13 The last
bracket is a newly added component saying fib(n) is cancellable and its maximum call depth is n.

After seeing how the notion of the cancellable call is defined, we now turn to the issue (88) above.
For this, first observe that the abstraction after WET does not change even if the wrapper adds
arbitrary cancellable calls to the abstractions since the cancellable calls are removed by WET. Thus,

13There are implicit castings from N to int and ordinal.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:24 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

UMem := •Y ∈ Auth (ptr→ Ex (val)) ⊆ Σ

(Mem := {

calloc: ∀= : int. {_ G. ⌜G = [=] ∧ = ≥ 0⌝}{_ A . ∃ ?:ptr. (? ↦→Mem (A4?40C 0 =)) ∗ ⌜A =?⌝}{⟨0⟩},

load: ∀(?, E) : ptr × val. {_ G. (? ↦→Mem [E]) ∗ ⌜G = [?]⌝}{_ A . (? ↦→Mem [E]) ∗ ⌜A = E⌝}{⟨0⟩},

store: ∀(?, E) : ptr × val. {_ G. (? ↦→Mem []) ∗ ⌜G = [?, E]⌝}{_ A . (? ↦→Mem [E]) ∗ ⌜A ∈ val⌝}{⟨0⟩},

free: ∀ : (). {_ G. ∃ ? : ptr. (? ↦→Mem []) ∗ ⌜G = [?]⌝}{_ A . ⌜A ∈ val⌝}{⟨0⟩} }

Fig. 8. Selected specifications for Mem module.

the wrapper implicitly and automatically inserts the following boilerplate code at every line.

var n := choose(Ordinal); repeat n { ASSERT(...); ; ASSUME(...) }

We call this construction ACC (Arbitrary Cancellable Calls). ACC executes the part for a
nondeterministically chosen number of times, where the part makes a nondeterministically
chosen cancellable call according to the given spec. In other words, an ACC is an over-approximation
of possible cancellable calls in the implementation. With this, the refinement of f above now holds
because there is an automatically inserted ACC on the abstraction side which one can instantiate n
as 1 and then instantiate as fib(10). Note that if there is no cancellable call to be matched in
the implementation, one can simply instantiate n to be 0 to skip the ACC in the simulation proof.

Finally, the aforementioned syntactic enforcement is made as follows: we enforce the body of a
cancellable call to be an ACC. This captures the notion of cancellable call well since the only thing a
cancellable call is supposed to do is (other than pure computations) to make other cancellable calls
(with strictly decreasing depth) with their conditions (which could modify the module resource).

5.2 Memory as a Module

Now we see how we handle memory as promised in §2.2. When it comes to handling memory (or a
global state in general), it is common in other module systems [Gu et al. 2015; Song et al. 2019] to
pass the memory as an additional argument resp. return value each time a function gets invoked
resp. returns. In CCR, we explore a rather different design: we handle memory as a module.

In particular, we define a module, Mem, representing memory and implement each memory opera-
tion as a function of this module. The benefits of this approach are as follows: First, defining memory
as a module allows us to reuse CCR’s existing mechanism for specifying pre- and postconditions
on functions. In particular, we can give a standard separation logic pre- and postconditions for
memory operations [Reynolds 2002] involving the points-to predicate ↦→ Mem. Second, defining
memory as a module makes it easy to support different memory allocators and memory models
as they can be defined independently. This means CCR does not “bake-in” the memory itself as a
primitive in the framework, but its notion of modules allows encoding of memory. These together
means that we do not need to extend the framework to handle memory.

The memory module we use, �Mem, is defined using a simplified version of the CompCert memory
model. Specifically, its private state consists of a finite partial mapping from pointers to values
(mem : ptr

fin
−⇀ val). Its specification, (Mem in Fig. 8, follows the usual style of specifying memory

operations in separation logic. In particular, it is specified using a points-to predicate ? ↦→ Mem ;

denoting the ownership of a list of data, ; , stored in the memory location from ? to ? + ;4=(;). This
predicate is defined using the same kind of PCM as the Map module described in §2.3.

One interesting aspect of the specifications in (Mem is that those calls are cancellable, as manifested
by the depth ⟨0⟩. This might be surprising since a call to e.g., store in �Mem modifies the memory
mem, which is not a pure operation. However, in ⟨ (Mem ⊢UMem �Mem ⟩, mem is abstracted to a module
resource (i.e., �Mem has a module-private state of type unit), and the operations like store modify
the module resource instead. As described in §5.1, cancellable function calls are allowed to modify

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:25

module resources as these resources are eliminated by theWET. This allows the memory operations
to be cancellable and thus be eliminated through refinement. For instance, in the running example
of Fig. 1, we do not need to write calls to the memory module in the abstraction �Map since they are
implicitly inserted and removed.

5.3 Abstraction of Arguments and Return Values

Consider the following example where, in the implementation module (left), there is one function,
popall, which takes a pointer (h) to a linked-list containing integer values (stored in memory),
then pops all the elements while printing it along the way. In the abstraction (right), it basically
does the same thing but now it takes a mathematical list (l).

def popall(h: ptr) ≡ if h then print(pop(h)); popall(h) else skip ̸⊑ctx
def popall(l: list Z) ≡ match l with | hd::tl ⇒ print(hd); popall(tl) | ⇒ skip end

def main() ≡ var h := newlist(); push(h, 9); popall(h) ̸⊑ctx def main() ≡ popall([9])

Here, the issue is that this seemingly sensible contextual refinement does not hold because the
type of the argument has changed. As seen in §2.1, in contextual refinement all the arguments and
return values in both sides should be and expected to be equal. For the same reason, the refinement
for a client module containing one function main also does not hold: the implementation (lower
left) calls popall with a linked-list containing 9 in the memory and the abstraction (lower right)
calls popall with a singleton mathematical list containing 9.

This section describes how to extend CCR to support this kind of refinement. Again, the idea is to
use dual non-determinism to give an illusion of value passing discussed in §2.2. That is, the wrapper
will automatically insert choose and take adequately so that the user can write abstractions as if
they are sending/receiving those abstract values (e.g., [9] and l) around, but under the hood the
wrapper adjusts it so that it physically sends/receives the same value as in the implementation (e.g.,
h and h), which is needed for the module-wise contextual refinement to hold.

Those abstract values (either an argument or a return value) are illusory things at the wrapped-
abstractions, just like resources. However, the WET will now do one additional task: it will materi-
alize those abstract values so that, after the elimination of wrappers, they get physically passed
around. In the above example, what will be left after the WET will exactly be the abstraction on the
right hand sides, now physically passing those abstract values (e.g., [9] and l). Note the difference
between the notion of resources and those abstract values where the former gets erased in the
WET, and the later gets materialized.

For all those mechanisms to make sense, at least the relation between abstract values and physical
values should somehow be specified so that the wrapper can make an illusion with respect to it.
To this end, we extend our pre- and post-conditions to have one additional parameter, Ga and Aa,
meaning an abstract argument and an abstract return value, respectively. With this, the specification
for the above popall could be written as follows:

∀ℎ : ptr. {_ G Ga . ∃ℓ : list Z. ⌜G = [ℎ] ∧ Ga = ℓ⌝ ∗ is list ℎ ℓ} {_ A Aa . ⊤} {∞}

saying that (8) in the implementation a pointer h is passed (G), (88) in the abstraction a mathematical
list will be passed (Ga), and (888) h is pointing to a linked list containing the values of l. The
postcondition is simply true, and this function is not cancellable since it makes visible effects.
Now we see how we make such an illusion of abstract value passing, again with dual non-

determinism. When sending a value to another module, the abstraction (user writes) will send
an abstract value and the wrapper will change it to a physical value choosen with respect to the
condition. On the other hand, when receiving a value from another module, the physical value will
be received and the wrapper will change it to an abstract value taken with respect to the condition.
The formal definition of such wrapping is given in [Song et al. 2022].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:26 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

(* module �RP *)
def repeat(f:ptr, n:int, m:int) ≡

if n ≤ 0 then return m

else { var v := (*f)(m)

return repeat(f, n-1, v) }

(* module �SC *)
def succ(m:int) ≡

m + 1

(* module �AD *)
def main() ≡

var n := getint()

print(str(repeat(&succ,n,n)))

�RP ((f) := {repeat : ∀(5 , =,<, 5sem) : ptr× int× int× (int→int).

{_ G. ⌜G = [5 , =,<] ∧ = ≥ 0 ∧ (f ⊒ {*5 :∀< :int, {_ G. ⌜G = [<]⌝}{_ A . ⌜A = 5sem (<)⌝}}⌝}

{_ A . ⌜A = 5sem
= (<)⌝}}

(SC:={succ:∀< : int. {_ G. ⌜G = [<]⌝}{_ A . ⌜A =< + 1⌝}}

(AD:={main:∀ : () . {_ G. ⌜G = []⌝}{_ . ⊤}}

Fig. 9. An example of higher-order reasoning.

When Ga/Aa in the pre/postcondition is omitted, it means they are equal to G/A , respectively.
We conclude this section with a few remarks. First, the abstract argument can contain essentially
more information – that was only available in the ghost resource – than the argument in the
implementation. In this example, the h itself does not have any information about the contents,
but l carries such information. Second, while the mechanism is used here to abstract the values
of implementation language into the values of specification (language), the mechanism is more
general than that and we anticipate its wider applications. As a case study, we show how to do
CompCertM-style compiler verification using this mechanism in [Song et al. 2022]. There, the
target memory is passed as a physical value, and the source memory is passed as an abstract value.

5.4 Function Pointers

Finally, we present how we can do higher-order reasoning involving function pointers of C-
like languages without extending the framework. The idea is simple. As already known in the
literature [Charguéraud 2020] – “Nested triples are naturally supported by shallow embeddings of
Separation Logic in higher-order logic proof assistants.” – we can use higher-order quantification of
the meta-logic, Coq. In our setting, since the collection of specifications (Conds in Fig. 7) themselves
are an object in the meta-logic, Coq, they can be made higher order in the meta-logic.

Concretely, consider the example given in Fig. 9. The function repeat(f,n,m) in �RP recursively
applies *f, n times, to m, where *f is the function pointed to by the pointer value f. The definitions
in �SC and �AD are straightforward to understand except that &succ is the pointer value pointing
to the function succ. The abstractions are simple and omitted in the figure: �RP and �SC directly
returns an arbitrary integer – which is then enforced to satisfy their postcondition by ASSERT –
and �AD prints (n + n).
To specify repeat, we essentially need to embed expected conditions for argument functions

f inside the condition of repeat. First, we give a higher-order condition �RP to the module RP,
given in Fig. 9, which is given as a function from conditions to conditions. Concretely, given (f, for
arguments 5 , =,< and a mathematical function 5sem, the condition �RP ((f) assumes (f to include
the expected specification for *5 (saying that *5 returns 5sem (<) for any argument<), and then
guarantees that the return value is 5sem

= (<). We have omitted the Depth parameter for those
conditions since the notion of cancellable calls are orthogonal to higher-order reasoning.

Then we verify RP. For any (f and any (⊇S ((f ∪�RP ((f)) (since repeat calls *5 and itself), we
prove:

�RP ⊑ctx ⟨ (⊢Y �RP ⟩.
Also, we verify SC. For any (⊇S (SC, we prove:

�SC ⊑ctx ⟨ (⊢Y �SC ⟩.
Also, we verify AD. For any (f ⊇S (SC (since succ is passed to repeat) and any (⊇S (�RP ((f) ∪(AD)
(since add makes a call to repeat), we prove:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:27

�AD ⊑ctx ⟨ (⊢Y �AD ⟩.
Finally, we instantiate those proofs with (f = (SC and (= �RP((SC) ∪ (SC ∪ (AD and apply WET:

�RP ◦ �SC ◦ �AD ⊑beh ⟨ (⊢Y �RP ⟩◦⟨ (⊢Y �SC ⟩◦⟨ (⊢Y �AD ⟩ ⊑beh �RP ◦�SC ◦�AD

As an advanced example, we also verify Landin’s knot [Birkedal and Bizjak 2020] (see our Coq
development [Song et al. 2022]).

6 IMPLEMENTATION AND EVALUATION

6.1 Imp and its Verified Compiler

For an end-to-end verification, we develop a deeply embedded language, IMP, for implementing
the modules. The IMP language is extended from Imp [Xia et al. 2019], and has standard syntax:

G ∈ LVarName 5 ∈ GlobName

4 ∈ �G?A ::= G | 8 : int64 | 41 == 42 | 41 < 42 | 41 + 42 | 41 − 42 | 41 × 42
B ∈ (C<C ::= skip | G := 4 | B1; B2 | if 4 then B1 else B2 | G = &5 | G = 5 (41, ..., 4=) | G = (∗4) (41, ..., 4=) |

G = malloc(4) | free(4) | G = load(4) | store(41, 42)

As with Imp, IMP is semantically interpreted into an itree (i.e., EMS module here). The semantics
is also standard except that the memory operations are interpreted as function calls to the Mem
module (§5.2). The notion of value consists of 64-bit integers and pointers.

We also develop a verified compiler from IMP to Csharpminor of CompCert [Leroy 2006], which
is then composed with CompCert to give a verified compiler L−M from IMP to assembly.

Theorem 6.1 (Separate Compilation Correctness). Given (�8 , �B<8) with L�8M = Some �B<8

for 8 ∈ {1, ... , =},

BehCC (�B<1 • · · · •�B<=) ⊆ Beh(�Mem ◦ �1 ◦ · · · ◦ �=)

Here • is the syntactic linking operator of CompCert, and BehCC computes a set of CompCert traces
for a given CompCert program, which are then implicitly casted into EMS traces. �Mem is an EMS
module (directly written as itrees) that implements our memory model (i.e., a simplified version of
CompCert’s).

6.2 Evaluation

Our development comprises 42,794 SLOC of Coq (counted by coqwc), including 12,925 SLOC for the
examples. The examples reason about various representative features of C-like languages including
shared memory, mutual recursion, function pointers, (non-)termination, and interaction with the
user. In these examples, we use the Iris Proof Mode [Krebbers et al. 2017] when proving logical
entailments. Further explanations for most of these examples are in the appendix [Song et al. 2022].
As already mentioned (§2.2), vertical compositionality played a crucial role in simplifying the

proof of the WET (Theorem 4.1). Specifically, the theorem is established by transitively composing
six refinements, where major ones of which are (8) removing ASSUME and ASSERT while mate-
rializing the abstract arguments (§5.3) and (88) removing cancellable calls (§5.1) by proving their
termination using the depth information.
Since our formalization is built on top of Interaction Trees, all the examples in the paper and

appendix can be extracted to OCaml and run. Note that all the itree events are handled inside Coq
except for the primitive events, EP. EP gets extracted to OCaml and is handled by special handlers
written in OCaml. Specifically, we wrote a few handlers doing IO for Obs and a handler for Choose
and Take, which asks the user for a nondeterministic choice (currently only supports int).

The extraction allows differential testing between implementations and abstractions (i.e., execut-
ing both and comparing the results). Interestingly, we found two mis-downcast bugs in one of our
example (the Echo example [Song et al. 2022, §3.4]) by testing it before verification.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:28 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

7 DISCUSSION AND RELATED WORK

As explained in the introduction, we are not the first to consider how to combine separation logic
and refinement in a single framework, but prior work in this direction does not fully marry the
benefits of separation logic and refinement in a unified mechanism. We compare here with the
most closely related work.

Contextual refinement. In general, refinement techniques may or may not be modular in the
structure of a program (i.e., they may require whole-program reasoning). Contextual refinement

is a variant of refinement that is inherently modular : component � contextually refines ((written
� ⊑ctx () if C[�] ⊑ C[(] under all closing program contexts C. It is also inherently transitive

by definition. Since contextual refinement is typically difficult to establish directly (due to the
quantification over all contexts C), many techniques have been developed for proving it locally (i.e.,
without explicitly reasoning about the context), including some based on separation logic [Turon
et al. 2013; Frumin et al. 2021a; Gäher et al. 2022]. A key limitation of contextual refinement,
however, is that it is in a certain sense too strong: it only applies to refinements that hold under
all program contexts, thus excluding refinements that hold only under contexts that satisfy some
conditions. Although some formulations of contextual refinement restrict the context—e.g., to
be well-typed—this still does not provide a very fine-grained method of expressing the precise
conditions on C under which C[�] ⊑ C[(].

Relational separation logics for contextual refinement. There has been a long line of work
on using relational separation logics [Benton 2004; Yang 2007] as a tool for effectively proving
contextual refinement in higher-order, imperative, and concurrent languages [Dreyer et al. 2010;
Turon et al. 2013; Frumin et al. 2018, 2021b; Gäher et al. 2022]. In these frameworks, separation
logic plays a critical role as a way of modularizing the proof of the contextual refinement itself, and
contextual refinement (by virtue of its transitivity) plays a critical role of enabling the verification of
the program to be performed in a stepwise, incremental fashion. But as explained in the introduction,
the benefits of the two mechanisms remain separate: they offer no way to express refinements
that are both conditional (with separation logic conditions) and transitively composable, as CCR
refinements are.

Hierarchical refinement. Another popular approach to refinement, as a program verification
technique, is what we call hierarchical refinement. Here, we first prove some notion of refinement for
the lowest-level (i.e., has no dependence on other modules) library module �1 against its abstraction:
�1 ⊑ . . . ⊑ �1. Then, we prove that a client module �2 refines its abstraction �2, as follows:
�1 ⊕ �2 ⊑ . . . ⊑ �2. Note that all the functions and private state of �1 are inlined into its client
module. Next, we prove �2 ⊕ �3 ⊑ . . . ⊑ �3—where �2 serves as a library module this time—and
this process is repeated until the whole system is verified.

This rather simple and elegant idea was popularized by Gu et al. [2015] in their work on Certified
Abstraction Layers (CAL), and it has proven to be powerful enough to verify both the CertiKOS
concurrent OS kernel [Gu et al. 2016] and the SeKVMhypervisor [Li et al. 2021]. Specifically, it enjoys
full compositionality—both vertical and horizontal—and it supports conditional refinement proofs
in a specific sense: the refinement proof for a client of a library module can depend conditionally
on the specification of the library module [Lorch et al. 2020] because the proof can literally inline
the (abstracted) code of the library module.
However, in terms of modular reasoning, the CAL approach also has limitations: (i) it does not

support mutual recursion—since there is a strict order between modules, imposed by dependence—
and (ii) its support for modular reasoning about shared state is limited compared to that of separation
logic. In particular, if the private state of a library module is shared among multiple client modules—
as in our running example (Fig. 1)—one needs to employ non-local reasoning across the client

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:29

modules. We believe the idea of CCR could potentially be applied in this setting to overcome the
second limitation.

Simulation versus behavioral refinement. It is perfectly valid to take a simulation relation
(Fig. 4)—instead of contextual refinement—as a universal building block. However, we advocate here
for using contextual refinement as a building block since (i) it gives vertical compositionality for
free, and more importantly, (ii) it is extensional: it specifies the property at a higher level without
mentioning how a pair of modules are simulated internally. This extensional definition is beneficial
because there could be multiple different simulation relations (implying contextual refinement),
and it is unclear whether there is a universal simulation relation that can be used for all examples.

Moreover, such an extensional nature of behavioral refinement can make gluing different projects
together easier. Specifically, in our end-to-end verification, the simulation being used in program
verification (Fig. 6), IMP Compiler (§6.1), and CompCert [Leroy 2006] are vastly different. However,
we can still compose them by first converting each of them to behavioral refinement; the notion of
behavior remains (almost) the same among these. This is in contrast to simulation-based frameworks
(e.g., CAL) where a uniform simulation is used across the compiler and program verifications.

Dual non-determinism. The notion of dual angelic/demonic non-determinism—which is
central to how we operationally enforce separation-logic specifications on modules—is an old idea,
but has mainly been studied in the context of game semantics. Refinement Calculus [Back 1981;
Back and Wright 2012] was a pioneer in this direction in that they employed assume and assert

statements and dual non-determinism (which we borrow from them) to write specifications as
programs, which in turn allows incremental verification. However, they only considered a simple
language with global state (no module-private states), and also did not consider the interaction
with separation logic. The most recent and relevant work to ours in this space is the work on
Refinement-Based Game Semantics (RBGS) [Koenig and Shao 2020; Koenig 2020]. They extend
Refinement Calculus into a setting similar to ours where there is a notion of layer (akin to module)
and its local state. However, their focus was on unifying the notions of refinement, game semantics,
and algebraic effects, and they also did not consider the interaction with separation logic.

8 LIMITATIONS AND FUTURE WORK

At the moment, CCR does not support any form of concurrency. While we believe the approach
used in §5.4 should be applicable for most programming patterns in C, we do not yet support all the
features of higher-order concurrent separation logic [Jung et al. 2018], which have proven useful in
reasoning about higher-order, imperative, and concurrent languages like Rust and OCaml.

Since CCR is a new framework that spans refinement-style verification, Hoare-style verification,
and testing, there are various future research directions: (8) supporting concurrency in the style
of Iris [Jung et al. 2018]; (88) developing property-based testing tools for efficient differential
testing between an implementation and its abstraction; and (888) integrating the idea of Parametric
Bisimulations [Hur et al. 2012] to support general higher-order languages.

Finally, we have focused here on developing a “model” that unifies separation logic and contextual
refinement, and the proofs we presented (in §2) work directly on the model level. In the future, we
plan to develop higher-level proof techniques which can hide low-level details of the model.

ACKNOWLEDGMENTS

We thank Ralf Jung and Simon Spies for helpful feedback. Chung-Kil Hur is the corresponding author.
This research was funded in part by Samsung Research Funding Center of Samsung Electronics
under Project Number SRFC-IT2102-03, a Google PhD Fellowship (Sammler), and awards from
Android Security’s ASPIRE program and from Google Research.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:30 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

REFERENCES

AndrewW. Appel. 2014. Program Logics for Certified Compilers. Cambridge University Press. https://www.cambridge.org/de/

academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers

R.J.R. Back. 1981. On correct refinement of programs. J. Comput. System Sci. 23, 1 (1981), 49–68. https://doi.org/10.1016/0022-

0000(81)90005-2

Ralph-Johan Back and Joakim Wright. 2012. Refinement calculus: a systematic introduction. Springer Science & Business

Media.

Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In Proceedings of

the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL ’04). Association

for Computing Machinery, New York, NY, USA, 14–25. https://doi.org/10.1145/964001.964003

Lars Birkedal and Aleš Bizjak. 2020. Lecture notes on iris: Higher-order concurrent separation logic. https://iris-

project.org/tutorial-material.html

Arthur Charguéraud. 2020. Separation Logic for Sequential Programs (Functional Pearl). Proc. ACM Program. Lang. 4, ICFP,

Article 116 (aug 2020), 34 pages. https://doi.org/10.1145/3408998

Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. 2010. A Relational Modal Logic for Higher-Order Stateful

ADTs. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

https://doi.org/10.1145/1706299.1706323

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A mechanised relational logic for fine-grained concurrency.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. 442–451.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021a. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained

Concurrency and Logical Atomicity. Log. Methods Comput. Sci. 17, 3 (2021). https://doi.org/10.46298/lmcs-17(3:9)2021

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021b. ReLoC Reloaded: A Mechanized Relational Logic for Fine-

Grained Concurrency and Logical Atomicity. Logical Methods in Computer Science Volume 17, Issue 3 (Jul 2021).

https://doi.org/10.46298/lmcs-17(3:9)2021

Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, and Derek

Dreyer. 2022. Simuliris: a separation logic framework for verifying concurrent program optimizations. Proc. ACM

Program. Lang. 6, POPL (2022), 1–31. https://doi.org/10.1145/3498689

Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David Costanzo. 2011. CertiKOS: A Certified Kernel for Secure

Cloud Computing. In Proceedings of the 2nd ACM SIGOPS Asia-Pacific Workshop on Systems (APSys 2011).

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2015).

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 2016).

Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012. The Marriage of Bisimulations and Kripke Logical

Relations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL

2012).

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013. The Power of Parameterization in Coinductive Proof.

In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy)

(POPL ’13). Association for Computing Machinery, New York, NY, USA, 193–206. https://doi.org/10.1145/2429069.2429093

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),

e20. https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. https://doi.org/10.1145/2676726.2676980

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal

verification of an OS kernel. In SOSP. ACM, 207–220. https://doi.org/10.1145/1629575.1629596

Thomas Kleymann. 1999. Hoare Logic and Auxiliary Variables. Form. Asp. Comput. 11, 5 (dec 1999), 541–566. https:

//doi.org/10.1007/s001650050057

Jérémie Koenig. 2020. Refinement-Based Game Semantics for Certified Components. https://flint.cs.yale.edu/flint/

publications/koenig-phd.pdf

Jérémie Koenig and Zhong Shao. 2020. Refinement-Based Game Semantics for Certified Abstraction Layers. In Proceedings

of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany) (LICS ’20). Association

for Computing Machinery, New York, NY, USA, 633–647. https://doi.org/10.1145/3373718.3394799

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

https://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers
https://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers
https://doi.org/10.1016/0022-0000(81)90005-2
https://doi.org/10.1016/0022-0000(81)90005-2
https://doi.org/10.1145/964001.964003
https://iris-project.org/tutorial-material.html
https://iris-project.org/tutorial-material.html
https://doi.org/10.1145/3408998
https://doi.org/10.1145/1706299.1706323
https://doi.org/10.46298/lmcs-17(3:9)2021
https://doi.org/10.46298/lmcs-17(3:9)2021
https://doi.org/10.1145/3498689
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/s001650050057
https://doi.org/10.1007/s001650050057
https://flint.cs.yale.edu/flint/publications/koenig-phd.pdf
https://flint.cs.yale.edu/flint/publications/koenig-phd.pdf
https://doi.org/10.1145/3373718.3394799

Conditional Contextual Refinement 39:31

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-Order Concurrent Separation Logic.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL 2017).

Association for Computing Machinery, New York, NY, USA, 205–217. https://doi.org/10.1145/3009837.3009855

Xavier Leroy. 2006. Formal Certification of a Compiler Back-end or: Programming a Compiler with a Proof Assistant. In

Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2006).

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. 2021. A Secure and Formally Verified Linux KVM

Hypervisor. In IEEE Symposium on Security and Privacy. IEEE, 1782–1799. https://doi.org/10.1109/SP40001.2021.00049

Hongjin Liang and Xinyu Feng. 2016. A program logic for concurrent objects under fair scheduling. In POPL. 385–399.

https://doi.org/10.1145/2837614.2837635

Jacob R Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz Qadeer, Upamanyu Sharma, James R Wilcox, and Xueyuan

Zhao. 2020. Armada: low-effort verification of high-performance concurrent programs. In Proceedings of the 41st ACM

SIGPLAN Conference on Programming Language Design and Implementation. 197–210.

John C Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In Proceedings 17th Annual IEEE

Symposium on Logic in Computer Science. IEEE, 55–74.

Thomas Schreiber. 1997. Auxiliary Variables and Recursive Procedures. In Proceedings of the 7th International Joint Conference

CAAP/FASE on Theory and Practice of Software Development (TAPSOFT ’97). Springer-Verlag, Berlin, Heidelberg, 697–711.

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2019. CompCertM: CompCert

with C-Assembly Linking and Lightweight Modular Verification. Proc. ACM Program. Lang. 4, POPL, Article 23 (Dec.

2019), 31 pages. https://doi.org/10.1145/3371091

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2022. CCR: Technical

documentation and Coq development. https://sf.snu.ac.kr/ccr/

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and Hoare-style reasoning in a logic for

higher-order concurrency. In Proceedings of the 18th ACM SIGPLAN international conference on Functional programming.

377–390.

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2019.

Interaction Trees: Representing Recursive and Impure Programs in Coq. Proc. ACM Program. Lang. 4, POPL, Article 51

(Dec. 2019), 32 pages. https://doi.org/10.1145/3371119

Hongseok Yang. 2007. Relational separation logic. Theor. Comput. Sci. 375, 1-3 (2007), 308–334. https://doi.org/10.1016/j.tcs.

2006.12.036

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/3371091
https://sf.snu.ac.kr/ccr/
https://doi.org/10.1145/3371119
https://doi.org/10.1016/j.tcs.2006.12.036
https://doi.org/10.1016/j.tcs.2006.12.036

	Abstract
	1 Introduction
	1.1 Refinement vs. Separation Logic
	1.2 Motivating Example

	2 Main ideas of CCR
	2.1 Stateless Conditional Refinement
	2.2 Stateful Conditional Refinement via Separation Logic
	2.3 Incremental and Modular Verification of the Motivating Example
	2.4 Wrapper Elimination

	3 Executable Module Semantics (EMS)
	3.1 Module and Contextual Refinement
	3.2 Traces and Behavior
	3.3 Simulation Relation

	4 CCR Framework, Simplified
	4.1 Condition Wrapped Abstractions
	4.2 Key Theorems of CCR

	5 More Examples and Features
	5.1 Cancellable Calls
	5.2 Memory as a Module
	5.3 Abstraction of Arguments and Return Values
	5.4 Function Pointers

	6 Implementation and Evaluation
	6.1 Imp and its Verified Compiler
	6.2 Evaluation

	7 Discussion and Related work
	8 Limitations and Future work
	Acknowledgments
	References

