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Fairness properties, which state that a sequence of bad events cannot happen infinitely before a good event

takes place, are often crucial in program verification. However, general methods for expressing and reasoning

about various kinds of fairness properties are relatively underdeveloped compared to those for safety properties.

This paper proposes FOS (Fair Operational Semantics), a theory capable of expressing arbitrary notions of

fairness as an operational semantics and reasoning about these notions of fairness. In addition, FOS enables

thread-local reasoning about fairness by providing thread-local simulation relations equipped with separation-

logic-style resource algebras. We verify a ticket lock implementation and a client of the ticket lock under weak

memory concurrency as an example, which requires reasoning about different notions of fairness including

fairness of a scheduler, fairness of the ticket lock implementation, and even fairness of weak memory. The

theory of FOS, as well as the examples in the paper, are fully formalized in Coq.
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1 INTRODUCTION

Although safety properties (i.e., something bad never happens under a certain condition) have
been major goals of verification, fairness properties (i.e., something bad cannot happen indefinitely
without anything good occurring) are also often crucial in verification, in particular, for concurrent
programs. For example, fairness assumptions about the underlying system—such as fairness about
the scheduler (i.e., a thread cannot be delayed by the scheduler indefinitely), or fairness about weak
memory (i.e., memory cannot delay committing a write indefinitely)—are often required to verify
concurrent programs. Moreover, customized concepts of fairness are required when working with
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lockabs () ;

- ≔ 42;

unlockabs () ;

do {

lockabs () ;

G ≔ - ;

unlockabs () ;

} while (G = 0)

print(G) ;

(CLI) ⊑ skip; print(42) ; (CLS)

Fig. 1. An example of concurrent program verification.

custom libraries: for example, fairness about acquiring a lock provided by a custom ticket lock
library (i.e., a lock request cannot fail indefinitely given that the lock is available).

However, general methods for abstractly expressing various concepts of fairness and reasoning
about them are relatively underdeveloped. For example, separation logics such as Iris [Jung et al.
2015] provide a flexible and powerful mechanism for specifying and reasoning about arbitrary
safety properties. In contrast, existing work in the fairness domain such as TaDA-Live [D’Osualdo
et al. 2021] and LiLi [Liang and Feng 2016] are comparatively limited in their power, foremost in
that they can only handle fixed notions of fairness instead of providing a general mechanism for
expressing and reasoning about custom fairness properties.
Clearly, it is desirable to have a general mechanism capable of (i) capturing various kinds of

fairness, and (ii) providing reasoning principles to both validate that a certain implementation is
fair and verify client code assuming fairness of components. Consider Fig. 1 as an example, where
a client program CLI consisting of two threads utilizes a library-provided lock to protect a shared
location - initialized to 0. The first thread sets - to 42, while the second thread repeatedly reades
from - until reading a non-zero value, upon which it will print the read value.

Intuitively, CLI refines the specification CLS (where the first thread does nothing and the second
prints 42) assuming that the scheduler and lock are ‘fair’. For example, CLI fails to refine CLS if the
scheduler is unfair and schedules thread 2 only; even if the scheduler is fair, an unfair lock giving
the lock only to thread 2, would result in an execution trace of CLI that cannot be captured by CLS.

Thus to prove that CLI refines CLS, one requires (i) a flexible mechanism for expressing the fairness
of schedulers and locks, and (ii) reasoning principles for reasoning about such flexible fairness
properties. Moreover, the ability to express and reason about general fairness properties enables a
proof to be split in two ways: (i) one may exploit the fairness assumptions when verifying client
code (e.g., proving that CLI refines CLS), and (ii) separately validate that a specific implementation
satisfies the fairness assumption (e.g., proving that a specific scheduler or a lock is actually fair).

FOS, a Theory for Fairness. In this paper, we present FOS (Fair Operational Semantics), a theory
for expressing and reasoning about fairness as an operational semantics. FOS provides:

• The standard notion of operational semantics extended with a special kind of events, called
fairness events, that allows expressing arbitrary kinds of custom fairness properties.
• A simple global simulation relation that allows one to validate (for libraries) and exploit (for
clients) fairness when proving refinements.
• A thread-local version of the aforementioned simulation and a logic capable of employing
separation-logic style reasoning to perform thread-local reasoning and simplify proofs.

We demonstrate the generality and power of FOS by (8) specifying fairness of the scheduler, locks,
and weak memory; (88) proving fairness of the scheduler for a simple scheduler implementation
and fairness of the lock for a ticket lock implementation; and (888) exploiting these three kinds of
fairness properties to verify client code (e.g., CLI ⊑ CLS). Note that existing work for reasoning
about fairness is based on simple sequentially consistent concurrency, whereas we use FOS to
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model a (fair) weak memory concurrency model and verify our examples under the model. The
theory of FOS is mechanized in the Coq proof assistant [The Coq Development Team 2021].

Paper Structure. The remainder of the paper is structured as follows. §2 first illustrates how
fairness properties can be expressed and reasoned about in a global fashion in FOS. §3 extends these
ideas to show how FOS expresses fairness under concurrency, and shows how thread-local reasoning
about fairness can be achieved in FOS. §4 and §5 formalize the high-level ideas presented in §2
and §3. §6 presents the module system of FOS, used to modularize proofs and define specifications
capturing various notions of fairness, and §7 presents the details of the aforementioned thread-local
reasoning. §8 presents a high-level overview of the verification of our motivating example. §9
concludes with related work.

2 MAIN IDEAS: FORMALLY EXPRESSING FAIRNESS

In this section, we aim to illustrate the key abilities of FOS: (i) How can we abstractly encode assump-
tions about fairness? (§2.1), (ii) How can one prove that a client program refines its specification
assuming fairness about a library? (§2.2), and (iii) How can one prove that a library implementation
refines its specification, validating the fairness assumption about the library? (§2.3).
We illustrate these abilities via the following example LOT, which draws a Boolean value via a

lottery function lottery(), and prints "win!" whenever that value is CAD4:

loop { if lottery() then print("win!") else skip } (LOT)

Note that LOT is sequential even though fairness commonly comes into play when reasoning
about concurrent programs. Nevertheless, LOT is expressive enough to illustrate the key ideas
behind FOS. The fairness assumption in LOT is that lottery() cannot return 50;B4 indefinitely
without returning CAD4 . Under this assumption, LOT prints infinitely many "win!"s, thus refining
the following program:

loop { print("win!") } (WIN)

The goal of this section is to first show how the assumption that lottery() is fair can be encoded
as a semantics of code, which doubles as a specification (§2.1), prove that LOT indeed refines WIN
under this assumption (§2.2), and finally show how a concrete implementation of lottery() can
be shown to validate this assumption (§2.3).

2.1 Fairness as a Semantics

As briefly mentioned in §1, fairness is the concept of ensuring that only a finite number of ‘bad
events’ happen before a ‘good event’ takes place. FOS captures this concept by defining two fairness
events: good and bad. Intuitively, good is triggered when a good event happens (e.g., lottery()
triggers goodwhen returning CAD4), and bad is triggered when a bad event happens (e.g., lottery()
triggers bad when returning 50;B4).

Observe that in a general setting, there are typically many entities for which fairness should be
ensured (e.g., each thread in a scheduler). In such a setting, a specific event (e.g., thread 1 being
scheduled) may be good for certain entities (e.g., thread 1) and bad for other entities (e.g., the other
threads). FOS formalizes this intuition by triggering fairness events according to a fairnessmap

fmap, which maps a fairness id to a fairness event good or bad. A fairness id is a unique identifier
for each entity vying for fairness, one for each kind of fairness one wishes to consider: for example,
each thread would have two fairness ids in a scenario considering both lock and scheduler fairness.
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In this example, there is only one entity that needs fairness to be ensured (the program), and
only one kind of fairness (the lottery), hence there is only one fairness id lot. Thus our fmap is of
type fmap : {lot} ↦→ {good, bad}.1

In order to actually trigger the fairness events within a fairness map, one requires a construct to
trigger these events in code. This role is fulfilled by the fairness constructor FAIR in FOS, whose
basic semantics is to take as argument an fmap and trigger all fairness events within the map for
the appropriate fairness ids.
Modelling fairness through good and bad events that are triggered explicitly throughout the

program allows us to give a formal definition of what it means for a program trace to be fair:

Definition 2.1 (Fair Trace). Consider a program % equipped with a set of fairness ids ID, and a
trace C obtained by executing % . For a fairness id id ∈ ID, let Cid be a sub-sequence of events of C
obtained by taking only the fairness events that are associated with id.

We say that C is a fair trace of % iff every Cid does not contain an infinite sequence of bad events
that precedes a good event. Otherwise, we say that C is an unfair trace of % . If all possible traces of
% are fair traces, then we say that % is fair.

Following Definition 2.1, consider the following specification of lottery() that encodes fairness
of lottery() for lot (PICK(B) nondeterministically picks a Boolean value):

def lottery()spec = if PICK(B) then FAIR( [lot ↦→ good]); ret CAD4
else FAIR( [lot ↦→ bad]); ret 50;B4

(SPEC)

Here FAIR takes the fmap [lot ↦→ good] when lottery() returns CAD4 , which captures that
a good event for lot happens. On the other hand, FAIR takes [lot ↦→ bad] on the false branch,
capturing that a bad event for lot has occurred.

As stated in Definition 2.1, a fair execution (trace) of SPEC is a trace where each fairness id does
not accumulate an infinite number of bad events before a good event. In tandem with triggering
fairness events, the fairness constructor FAIR also filters out such unfair traces. A good way to
understand FAIR is as a monitor that keeps track of the fairness events that each fairness id sees
via the supplied fairness maps, and filters unfair executions out. One can then understand that the
following unfair execution trace is not a valid trace of SPEC, as FAIR prohibits such unfair traces:

[lot ↦→ bad] :: [lot ↦→ bad] :: [lot ↦→ bad] :: [lot ↦→ bad] :: ...

On the other hand, traces such as the following are allowed, as each bad has a following good:

[lot ↦→ bad] :: [lot ↦→ good] :: [lot ↦→ bad] :: [lot ↦→ good] :: ...

In the end, the fairness events good and bad are silent events that have no effect on the actual
behavior of the program; they are merely used to encode fairness via FAIR. Thus SPEC becomes a
valid fair specification for lottery() that captures exactly the ‘fair’ behavior of a lottery.

As shown, FOS allows one to encode desired notions of fairness directly as a piece of code but

still in an abstract form through the use of fairness maps and FAIR. This puts us in a very favorable
position for our next task, to prove that LOT refines WIN assuming that lottery() is fair, as one
may now utilize SPEC directly to build the refinement proof.

2.2 Proving that LOT Refines WIN: Exploiting Fairness

Based on our encoding of fairness as a semantics, we now wish to prove that LOT where the
semantics of lottery() are given by SPEC (which we denote as LOT[SPEC]) refines WIN. In

1A formal definition of fmap includes n (an empty event) in the codomain, but we choose to ignore this for the time being.
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proving refinement, we take the standard approach of constructing a simulation that matches
arbitrary program steps from the target to program steps of the source.
What makes refinement in FOS special is the semantics of FAIR, which filters out any unfair

execution. Because we are left only with fair executions, we call refinement in FOS as fair refinement,
as it only maps fair target behaviors to fair source behaviors. Then FOS develops a simulation that
ensures fair refinement; given that traditional simulations prove refinement with stepwise rules,
FOS also aims for a simulation providing such stepwise rules, without having to reason about the
entire execution trace. The main obstacle in developing such a simulation is the very presence
of FAIR, which decides the fairness based on the entire trace. We overcome this by developing
stepwise simulation rules that are capable of dealing with the FAIR constructs directly, by correctly
reflecting their semantics (filtering out unfair traces) in the simulation.

Fairness Counter. To reason about FAIR in our simulation rules, we introduce the concept of a
fairness counter, which intuitively counts the number of bad events that happen before a good
event. Formally, a fairness counter is a per-program (source / target) map whose domain is identical
to the fairness map of the program (that is, the entities for which fairness must be ensured) and
whose range is a set equipped with a well-founded relation. In this example, we take our fairness
counter c to be of type cmap : {lot} → N; i.e., a map that assigns a natural number to lot.
The key idea behind the fairness counter is that each entity is mapped to a value which cannot

decrease indefinitely. As stated, this counter counts the maximum number of bad events that an
entity may see before encountering a good event: a value cannot decrease indefinitely under a
well-founded relation, thus limiting the number of bad events that may happen to a finite value.
The simulation keeps track of the fairness counter along with the continuation of the program, and
will update the fairness counter when dealing with FAIRs in the source or target program—a bad
event decreases the counter, while a good event will reset this counter to some arbitrary value.
Formally, we capture this update mechanism as a relation c ↩→f c

′, and say that c′ updates c
given the fairness map f (the fairness map is required to determine the fairness ids for which the
fairness counter should decrease and be reset). The exact definition of c ↩→f c

′ depends on the set
of entities considered; in this example, c ↩→f c

′ can be defined as:

c ↩→f c
′ ≜ match f (lot) with || good ⇒⇒ ⊤ || bad ⇒⇒ c

′(lot) < c(lot)

This definition states that c′ updates c if (i) lot triggers good, in which case any c
′ updates c, or

(ii) lot triggers bad, in which case the counter of lotmust decrease. Because the counter of lot cannot
decrease below 0, updating the fairness counter ensures that unfair traces in which lot triggers bad
infinitely are not considered when constructing our simulation; this corresponds to the semantics
of FAIR which filters out unfair traces, allowing the fairness counter to capture the semantics of
FAIR within a simulation.

Exploiting Fairness. Now, we wish to construct a simulation that relies on lottery() being fair
to prove that LOT[SPEC] refines WIN. The following rule enables this by dealing with FAIR in the
target program when constructing a simulation:

simft
∀c′. (c ↩→f c

′)→(c′, :) ≲ S

(c, FAIR(f); :) ≲ S

where : denotes the continuation, S the source, and the relation ≲ denotes that the right-hand
argument of ≲ simulates the left-hand argument. Note that SIMFT (and our simulation rules in
general) relates a pair of a fairness counter and a continuation. The rule consumes a FAIR from the
target, and intuitively applies the effect of the FAIR construct by updating the fairness counter from
c to c

′. In particular, SIMFT states that we only need to consider cases where c′ updates c under f :
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as we will illustrate below, this has the effect of discarding unfair executions of the target in the
simulation, just as FAIR filters out unfair executions.
As an example, consider an application of SIMFT in order to prove the following simulation:

( [lot ↦→ 8], FAIR( [lot ↦→ bad]); :) ≲ S

SIMFT applied to this proof goal requires that we prove a simulation for any c′ that updates [lot ↦→ 8]
when lot triggers bad: that is, any [lot ↦→ 8 ′] for 8 ′ < 8 . If lot keeps on losing due to an unfair
execution, the simulation proceeds until the following proof goal is reached:

( [lot ↦→ 0], FAIR( [lot ↦→ bad]); :) ≲ S

At this point, observe that there does not exist any c′ such that c′ updates [lot ↦→ 0], as�8 ′ ∈ N.8 ′ < 0.
Thus the premise of this proof goal becomes a vacuous truth, and it follows that the simulation
trivially holds for such unfair executions: this is the effect of SIMFT discarding unfair target executions
in the simulation, similar to how FAIR filters out unfair executions!

On the other hand, suppose that lot encounters a good event and wishes to prove the following:

( [lot ↦→ 8], FAIR( [lot ↦→ good]); :) ≲ S

In this case, the updated counter c′ may be an arbitrary natural number: this ensures that fair traces
are not discarded, no matter how many bad events precede a good event. Since a good event returns
CAD4 , the simulation will then be able to match a print from LOT[SPEC] with a print from WIN, and
further apply the same reasoning inductively to prove that LOT[SPEC] indeed does refine WIN.

The power of SIMFT allowing us to discard unfair traces of the target is what makes constructing a
simulation that considers only fair behavior possible: we call this property fairness exploitation.

2.3 Proving that lo�ery() is Fair: Validating Fairness

To wrap this section up, we consider constructing a simulation in the opposite direction to §2.2:
how can we deal with FAIRs in the source program? Such scenarios emerge when one is trying to
prove that a certain implementation is indeed fair: e.g.,when proving that a specific implementation
of lottery() refines SPEC.

Consider the following two implementations of lottery():

def lotfair () = if G then G ≔ 50;B4 ; ret CAD4 else G ≔ CAD4; ret 50;B4

def lotunfair () = ret 50;B4
(IMPL)

Before discussing the fairness of lotfair and lotunfair directly, observe that both lotfair and
lotunfair are trivially ‘fair’ in themselves as their executions are finite. However, when used with
LOT, clearly lotunfair becomes unfair while lotfair is still fair. As illustrated, the context in which
an implementation is used has an effect on whether the implementation is fair or not; we will thus
prove that LOT[lotfair] refines LOT[SPEC] in order to prove that lotfair is a fair implementation.

SIMFS is the rule for dealing with FAIRs from the source in the simulation (T denotes the target):

simfs
∃c′. (c ↩→f c

′)∧T ≲ (c′, :)

T ≲ (c, FAIR(f); :)

Like SIMFT for consuming FAIRs in the target, SIMFS consumes FAIRs from the source and models
the effect of FAIR in the simulation. In contrast to SIMFT, SIMFS states that there must exist a fair
update of the fairness counter c: this ensures that there must exist a fair behavior of the target
corresponding to the fair source behavior in order for the simulation to hold.

To see this effect, let us attempt to prove that LOT[lotunfair] fairly refines LOT[SPEC] (which is
clearly untrue). Assume this time that we are starting with the following proof goal, where FAIR
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occurs in the source LOT[SPEC]:

T ≲ ( [lot ↦→ 8], FAIR( [lot ↦→ bad]); :)

Observe that because the target LOT[lotunfair] has a trace where it cannot print any "win!"s due
to lotunfair returning 50;B4 indefinitely, the source must also be able to match this trace for a
simulation to hold. Clearly, lot must trigger bad indefinitely within this source-trace as well: thus
the fairness map is fixed to [lot ↦→ bad], and applying SIMFS multiple times in this fashion will
eventually again yield a proof goal where the fairness counter of lot is zero:

T ≲ ( [lot ↦→ 0], FAIR( [lot ↦→ bad]); :)

Here, observe that we cannot apply SIMFS to consume the source-FAIR anymore as there no longer
exists a fairness counter that can update [lot ↦→ 0]. In essence, the fairness counter limits the
behavior of the source to be fair, similar to how FAIR in the source filters out unfair traces of the
source. The fact that the target LOT[lotunfair] has unfair behavior, which cannot be simulated
by the only-fair behavior of the source, is reflected by SIMFS becoming no longer applicable when
constructing the simulation. Because we can no longer consume the FAIR of the source, the
simulation can no longer proceed and thus we cannot prove that LOT[lotunfair] refines LOT[SPEC]!
In contrast, suppose now that we are correctly trying to prove that LOT[lotfair] refines

LOT[SPEC]. Because LOT[lotfair] is fair and emits "win!" every other iteration, the source program
can also let lot trigger good when constructing the simulation:

T ≲ ( [lot ↦→ 8], FAIR( [lot ↦→ good]); :)

At this point, applying SIMFS allows us to update c′ to any value; the simulation can thus choose
a value larger than the number of bad events it will see before seeing another good event (here,
even 1 will suffice as the target LOT[lotfair] alternates between printing "win!" and not). One can
successfully prove that LOT[lotfair] refines LOT[SPEC] by applying this reasoning inductively.

The reasoning principle enabled by SIMFS stands in direct contrast with the reasoning principle
enabled by SIMFT, which allowed us to discard unfair target traces by corresponding them to vacuous
truths. In contrast, SIMFS requires that the target must only exhibit fair behavior for it to be able to
refine a (fair) source: we call this principle fairness validation.

3 MAIN IDEAS: CONCURRENCY AND THREAD-LOCAL REASONING

Having established the basic reasoning principles behind FOS, we now illustrate how fairness under
concurrency with schedulers and locks can be modeled in FOS (§3.1), and then how refinement for
concurrent programs can be proved in FOS, particularly in a thread-local manner (§3.2).
The running example in this section is identical to the motivating example from §1 (memory

locations and variables in the paper, stated otherwise, are initialized to 0):

b
; lockabs ();b
; - ≔ 42;b
; unlockabs ();b
;

do {b
; lockabs ();b
; G ≔ - ;b
; unlockabs ();

b
;

} while (G = 0)b
; print(G);

b
;

(CLI)

We assume sequential consistency as the memory model for CLI; later in §6.1, we will encode
memory fairness to allow the use of weak memory models as well. As discussed, CLI, is a worker
(thread 1) and a waiter (thread 2) process, which relies on a lock to protect non-atomic accesses to
the shared memory location - . In this paper, we define the semantics of yielding such that a thread
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will yield if and only if it meets an explicit yield instruction
b

in the program: this models threads
to be altruistic, and also has the effect of treating program fragments between

b
s as atomic.

As discussed in §1, we wish to prove that CLI fairly refines the following specification CLS:
b
; skip;

b
;

b
; print(42);

b
; (CLS)

To prove this refinement, one must be capable of establishing that thread 1 eventually acquires the
lock, which in turn depends on fairness of the scheduler and the lock. We thus formally express
scheduler and lock fairness first in §3.1, then illustrate the key argument required for establishing
that thread 1 eventually acquires the lock during a fair execution in §3.2.

3.1 Fair Specifications for Concurrent Components

To prove that CLI fairly refines CLS, one first requires a specification that encodes the fairness of
the scheduler and the lock. In a concurrent setting, this means that fairness should be ensured for
all threads, which are vying to get scheduled or acquire the lock. We can express these two distinct
kinds of fairness by setting the fairness ids ID as the disjoint union of th8 , the ids for scheduler
fairness, and lk8 , the ids for lock fairness, where 8 is a thread id. Thus ID becomes the domain of
the fairness map fmap and the fairness counter cmap:

f ∈ fmapID ≜ ID→ {good, bad} c ∈ cmapID ≜ ID→ N

The events good and bad again model good and bad events: in this case, a good event is when a
thread is scheduled or successfully acquires a lock.

Scheduler Fairness. In this paper, concurrency is modeled via thread interleaving, where a thread
pool is a finite map from a thread id (in N) to a code. Then the scheduler manages a thread pool by
kicking out threads when they terminate; we call the remaining threads in the pool valid threads,
and denote their ids as NE . Under this thread interleaving model, a scheduler may be viewed as a
program that picks a valid thread id and executes the code of that thread; afterward, a yield

b
will

return execution to the scheduler which will proceed to schedule the next thread.
A fair spec of a scheduler may be written as follows, where % represents the thread pool:

_% . while(NE ≠ ∅)
{ =← PICK(NE); FAIR( [th= ↦→ good, {th< | < ∈ NE ∧< ≠ =} ↦→ bad]); exec(% (=)) }

(SCH)

In SCH, PICK nondeterministically picks a valid thread id = to execute. The fairness of SCH is
guaranteed by the following FAIR constructor, whose fairness map assigns good to the scheduled
thread and bad to all other threads: following the semantics of the FAIR constructor, it is clear
that any fair execution of SCH will result in valid threads becoming scheduled infinitely often.
This captures exactly the concept of ‘scheduler fairness’ that programmers rely on when writing
programs: that running threads will not be starved indefinitely by the scheduler.
Throughout the paper, we assume that schedulers satisfy SCH if not stated otherwise; this

allows us to exploit scheduler fairness. We emphasize that SCH represents only the fair schedulers.
Therefore, if a system’s correctness relies on SCH, one should also validate the fairness of the
scheduler implementation employed by the system to guarantee the full correctness of the system.

Lock Fairness. In addition to scheduler fairness, proving that CLI refines CLS requires fairness
of the lock: clearly CLI will fail to terminate if, e.g., the lock implementation is unfair and never
grants the lock to thread 1. Encoding this fairness requirement once again requires a specification
for the lock, which in addition to guaranteeing fairness as desired, should ideally abstract away
implementation details such as data structures or memory accesses. The second desideratum allows
different concrete implementations to refine the specification, as done in §2.3.
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def lockabs () =

= = GetTid; , =, ∪ {lk= }; //L1

loop { if own then
b
; else break } //L2

own = CAD4 ; , =, \ {lk= }; FAIR( [lk= ↦→ good,, ↦→ bad]) //L3

ret //L4

, ⊆ {lk8 | 8 ∈ N} >F= ∈ B

def unlockabs () =

assume(own = CAD4) ; //L1

own = 50;B4 ; //L2

ret //L3

Fig. 2. A fair spec of fair locks, ABSLock.

Fig. 2 presents such a specification for fair locks. Consider the lock function lockabs (): here,
each thread with thread id 8 is represented using a new entity lk8 , which is a new fairness id for
each thread required to ensure that a good obtained via a scheduling event does not also result in
a good of the lock, and vice versa. The specification is straightforward: a thread will add itself to
the waiting set, and enter the loop to wait for a lock, then trigger a good for itself and bads for
all other threads in, upon acquiring a lock. This implies that a thread waiting for the lock must
eventually acquire the lock if the lock is available, as it will accumulate an infinite number of bads
otherwise (assuming scheduler fairness). On the other hand, a thread outside of the waiting set,
is unaffected by the fairness events triggered by the lock: this captures the common concept of
‘lock fairness’, in that a thread attempting to acquire an available lock will eventually succeed.

(), ( : globally fixed memory locations)
def locktk () = C ≔ FAI() ); do { B ≔ ( ; } while(C ≠ B)
def unlocktk () = B ≔ ( ; B = B + 1; ( ≔ B;

(TicketLock)

To conclude the discussion on fair concurrent specifications, let us briefly consider how the ticket
lock implementation in TicketLock can validate the fair specification given in Fig. 2. TicketLock
issues a ticket counter C to every thread that attempts to acquire the lock; this counter is guaranteed
to strictly increase due to the fetch-and-increment instruction FAI() ), which increments the value
stored at the memory location ) by 1 and returns the old value. When a thread calls unlocktk (),
the service counter stored in the memory location ( is increased: this allows the ticket lock to
service the next thread that holds the ticket corresponding to the current service counter.

TicketLock is fair under sequential consistency and scheduler fairness, refining the fair specifica-
tion from Fig. 2. This is because the ticketing scheme ensures that only a finite number of threads
may be queued before a thread to acquire a lock; this means that a thread can only trigger a finite
number of bads before successfully acquiring the lock, ensuring that the trace is fair.

3.2 Exploiting Fairness Under Concurrency via Thread-Local Reasoning

Given the fairness properties we have encoded in §3.1, we now illustrate how one may actually
prove that CLI fairly refines CLS. The key intuition in this section is that one may perform induction
on the fairness counters when constructing a simulation to discard unfair behavior. Furthermore,
these fairness counters may be treated as shared state between threads, which enables thread-local
reasoning when constructing a simulation.

Global Proof by Induction. Before illustrating how thread-local reasoning can be performed in
FOS, we first establish a global argument to prove that CLI fairly refines CLS; we will later show
that this argument extends naturally to thread-local reasoning.
One of the main reasoning patterns enabled by fairness is the ability to argue that something

goodmust happen eventually in a fair execution—e.g., , thread 1 eventually acquires the lock in CLI.
In CLI, this is required to ensure that the loop in thread 2 of CLI eventually exits in a fair execution,
which allows one to match the final print with the print in CLS when constructing a simulation.

The key idea in proving that a good event happens is to construct a value that decreases but
cannot decrease infinitely, until the good event is triggered. The fairness counter c (from the global
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simulation relation in §2) captures perfectly this required decreasing value. Recall that the fairness
counter also allows one to discard unfair executions of the target: thus by performing induction on
the fairness counter, one can focus only on fair executions when constructing the simulation.
To see this strategy in detail, reconsider the fact that we must show thread 1 of CLI eventually

acquires the lock (a good event) when constructing a simulation. Intuitively, lk1, the fairness
counter for thread 1 acquiring the lock, can serve as the decreasing value for this good event, as
thread 2 acquiring the lock instead will trigger a bad for lk1. Then by performing induction on lk1,
one can establish that either (i) thread 1 acquires the lock and writes 42 to - , or (ii) the execution
being considered is unfair, as lk1 cannot decrease indefinitely.

To be more formal about the argument, one must also consider the fact that thread 2 progresses
and eventually releases the lock (otherwise thread 1 will not accumulate a bad). This can be done
by introducing an additional counter =, which keeps track of the remaining lines of code (i.e., the
number of remaining yields) until the lock is released. Of course, progress of thread 2 relies on
thread 2 being scheduled—which can in turn be captured by the fairness counter th2. Thus the
actual decreasing value for thread 1 to acquire the lock is given as a tuple (lk1, =, th2), where the
order of the tuples is given by lexicographic order: lk1 is the most significant as the subsequent
two counters serve to ensure that lk1 decreases. A formal proof would perform induction on this
tuple to ensure progress as opposed to merely lk1.

Thread-Local Reasoning for Fair Refinement. Given the aforementioned proof strategy based
on induction on a decreasing value, we now show how this reasoning may be performed in a
thread-local manner to prove that CLI fairly refines CLS without considering all thread interleavings.
As mentioned, the key idea that enables local reasoning for FOS is that the fairness counter—

which captures the concept of fair behavior in the simulation—can naturally be treated as shared
state between threads. This allows each thread to perform local reasoning via a shared protocol,
in which threads rely on other threads upholding the protocol when resuming execution from a
yield

b
, and conversely guaranteeing that the protocol is satisfied before yielding. Through this

rely-guarantee reasoning, one can perform induction thread-locally to prove that a refinement
between threads holds using almost the same argument that was applied globally, without having
to consider all thread interleavings in a global simulation.

In our example, consider the following protocol which states that threads satisfy one of the given
three states on a yield. This protocol is used to ensure that thread 1 eventually acquires the lock:

• Either the lock is unowned (>F= = 50;B4),
• Thread 1 holds the lock, or
• Thread 2 holds the lock and the tuple (lk1, =, th2) decreases.

Here, it is true that = is local to thread 2 and inaccessible to thread 1; we will temporarily assume
that = is a ‘ghost’ variable that is managed by thread 2 on every yield for the sake of presentation.

Consider this protocol in the context of thread 2: if thread 1 does not hold the lock, then (i) thread
2 yields in a state where >F= = 50;B4 (directly after releasing the lock), or (ii) it will have decreased
the tuple (lk1, =, th2). This is because thread 2 acquiring the lock will either trigger a bad event
for thread 1, or decrease = by progressing within the loop and reducing the number of remaining
yields. Thus thread 2 guarantees that it upholds the protocol at each point it encounters a yield,
without considering the behavior of thread 1 at all.

On the other hand, thread 1 may rely on the protocol being upheld when resuming execution at
a yield point. If >F= = 50;B4 , then thread 1 acquires the lock and the simulation can make progress.
If >F= = CAD4 but thread 1 does not have the lock, then thread 1 decreases the given tuple as th2
decreases due to thread 1 winning in the scheduler. Thus thread 1 can also guarantee that the
protocol is upheld, without considering the behavior of thread 2.
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ID : )~?4 flag ≜ {good, bad, n } fmapID ∈ ID→ flag ' : )~?4

FLID, '
coind
= || FAIR(f ∈ fmapID) >>= (: ∈ () → FL) || PICK(- : )~?4) >>= (: ∈ - → FL)

|| Obs(5= ∈ string, 0A6B ∈ list Val) >>= (: ∈ Val→ FL) || ret (A ∈ ') || stuck

SilEv ≜ || X (f ∈ fmap) ObsEv ≜ || obs(5= ∈ string, 0A6B ∈ list Val, E ∈ Val)

Trace
coind
= || (4 ∈ SilEv ⊎ ObsEv) :: (CA ∈ Trace) || Term (A ∈ ') || Error

Behavior
coind
= || (> ∈ ObsEv) :: (CA ∈ Behavior) || Diverge || Term (A ∈ ') || Error

FairTr ∈ P(Trace) ≜ { CA | ∀8 ∈ ID. FairTr8 (CA ) }

FairTr8∈ID ∈ P(Trace) ≜ a- . `. . a/ . _CA . //-, ., / ∈ P(Trace)

match CA with || Term A⇒⇒⊤ || Error⇒⇒⊤

|| obs(5=, 0A6B, E) :: C; ⇒⇒/ (C;)

|| X (f) :: C;⇒⇒ match f (8) with || n ⇒⇒/ (C;) /// : inner coinductive

|| bad ⇒⇒. (C;) //. : middle inductive

|| good⇒⇒- (C;) //- : outer coinductive

Fig. 3. Core definitions of the language FL, behavior, and fair trace.

As the shared protocol is guaranteed by both threads, one may perform induction locally in a
thread to ensure progress. For example, in thread 1, applying induction using the protocol results
in that either (i) thread 1 acquires the lock, or (ii) the execution is unfair, as the tuple failing to
decrease indicates that the fairness counters lk1 or th2 cannot decrease, implying unfairness. Thus
thread-local reasoning based on this protocol shows that executions where thread 1 cannot acquire
the lock and does not terminate are unfair—and are thus discarded, allowing one to construct a
thread-local simulation showing that thread 1 of CLI fairly refines thread 1 of CLS!
As shown above, protocols for thread-local reasoning about fairness often require the use of

ghost values such as =, which may not be easy to expose to other threads. Fortunately, existing
work on modern concurrent separation logic [Jung et al. 2015] allows us to express such protocols
as invariants. FOS blends naturally with this idea, resulting in a simulation technique where true
thread-local reasoning is enabled via separation logic; this technique is formalized in §7.

4 CORE DEFINITIONS OF FOS

We now formalize the ideas presented so far in Sections 4 to 6. In this section, we present (whole-
program) fair semantics, refinement, and a simulation relation, which are straightforward formal-
izations of the ideas in §2; concurrency and the module system are formalized in §5 and §6.

4.1 Definitions of Fair Operational Semantics

To write fair programs (e.g., those in §2), we first define a language FL (fair language) in Fig. 3. FL is
coinductively definedwith three constructors FAIR, PICK, and Obs, in addition to ret for termination
and an explicit stuck to indicate an error, i.e., undefined behavior. The fairness constructor FAIR
invokes fairness events via the fairness map fmap. fmap’s range is flag, which now includes n
to express that the fairness event is undefined for that index (usually omitted for brevity). PICK
non-deterministically picks a value from any given set- , passing it to the continuation. Finally, Obs
invokes an observable effect, e.g., a system call, represented by a function name 5= and arguments
0A6B , and passes the return value to the continuation. Terms in FL within the Coq development are
defined using interaction trees [Xia et al. 2019], as opposed to directly embedded as Coq functions.
This allows us to reuse programming constructs such as match . . . with for branches, G←? ; :, >>=

for monadic bind, and loop for loops, thereby keeping our language minimal yet expressive.
The semantics of an FL program ? is defined by the set of its possible behaviors Beh(?). For

this, we first derive a set of possible traces from a program where a trace is a stream of silent
(X) or observable (obs) events and can possibly terminate with a return value or an error. The
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cmapID, C< ∈ ID→ C< < ∈ P(C< × C<) is well-founded ≲ ∈ P( (cmap × FL) × (cmap × FL))

c ↩→f c
′ ∈ P(cmap × fmap × cmap) ≜ ∀8 ∈ ID. match f (8) with || good ⇒⇒ ⊤ || bad ⇒⇒ c

′ (8) < c(8) || n ⇒⇒ c
′ (8) = c(8)

simret
AC = AB

(cC , ret AC ) ≲ (cB , ret AB )

simstuck

T ≲ (c, stuck)

simpt
∀G ∈ - . (c, : (G)) ≲ S

(c, PICK(- ) >>= :) ≲ S

simps
∃G ∈ - . T ≲ (c, : (G))

T ≲ (c, PICK(- ) >>= :)

simft
∀c′ ∈ cmap. (c ↩→f c

′) → (c′, : ()) ≲ S

(c, FAIR(f) >>= :) ≲ S

simfs
∃c′ ∈ cmap. (c ↩→f c

′) ∧ T ≲ (c′, : ())

T ≲ (c, FAIR(f) >>= :)

Fig. 4. Definitions of cmap and selected rules of our simulation relation ≲ (slightly simplified).

language construct FAIR(f) emits X (f), PICK emits X ( [_ ↦→ n]), Obs emits corresponding obs, and
ret(A )/stuck terminates the trace correspondingly. Then, a behavior is defined as an observable
summary of a trace in the sense that it drops all silent events and leaves only observable events.
An infinite trace with only silent events results in a silent divergence [Leroy 2006].

Now, for a set of traces, we derive a set of behaviors by (i) filtering out unfair traces with help from
Xs, and (ii) erasing the now meaningless Xs. A fair trace, defined by FairTr, is a trace that satisfies
FairTr8 for every index 8 in ID. FairTr8 allows only finite bads until the next good for 8 , captured
by the mixed coinductive-inductive-coinductive definition: the inner coinductive (/ ) captures the
possibly infinite fairness-irrelevant trace, the middle inductive (. ) ensures only finite bads are
encountered until a good, which can appear infinitely as expressed by the outer coinductive (- ).
Then whole-program refinement between two FL programs ?C and ?B is defined as follows:

?C ⊑ ?B ≜ Beh(?C ) ⊆ Beh(?B )

⊑ is transitive, reflexive, and preserves termination (i.e., if the target has (fair) divergence, so does
the source). Note that the source and the target may have different IDs.

4.2 Simulation Relation

The simulation (≲) presented in §2.2 is formalized in Fig. 4, which relates two FL programs. The
rules are identical except that cmap is now parameterized over ID, the set of fairness indices, and
C< , a well-founded order.2 Expectedly, the simulation satisfies the following adequacy theorem:

Theorem 4.1 (Adeqacy). For a pair of programs ?C , ?B and a well-founded set C< , we have:

(∀cC ∈ cmap(IDC ,N) . ∃cB ∈ cmap(IDB , S<) . (cC , ?C ) ≲ (cB , ?B )) =⇒ ?C ⊑ ?B

5 FORMALIZING FAIR CONCURRENCY

In this section, we present the formal definitions of our model of concurrency and scheduler fairness
following the ideas in §3.1, and show that a simple round-robin scheduler satisfies scheduler fairness.

5.1 Semantics of Concurrency

In this paper, concurrency is modeled by interleaving semantics with thread-yields, meaning that
the scheduler interleaves the execution of the threads and each thread yields to the scheduler. To
write concurrent programs, we define the thread language TFL and the scheduler language SFL.
Then threads and a scheduler are together interpreted as a FL program, so the semantics (behavior)
of a concurrent system (threads and a scheduler) is naturally defined by the semantics of FL (Fig. 5).

2We omit ID and C< for brevity whenever they are clear from the context.
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th ≜ N ', ST : )~?4 TPoolID, ', ST ≜ th
fin
−−⇀ TFLID, ', ST (2ℎ ∈ scheduler' ≜ (th × Fin(th)) → SFL'

TFLID, ', ST
coind
= ||

b
>>= (: ∈ () → TFL) || GetTid >>= (: ∈ th → TFL) || Put(BC ∈ ST) >>= (: ∈ () → TFL)

|| Get >>= (: ∈ ST→ TFL) || FAIR(f) >>= : || PICK(- ) >>= : || Obs(...) >>= : || ret A || stuck

SFLID=th, '
coind
= || Exec(= ∈ th) >>= (: ∈ '?→ SFL) || FAIR(f) >>= : || ...

'⊻ ≜ || ▲ (A ∈ ') || ⊻ (C ∈ TFL)

TI(= ∈ th, C ∈ TFL, BC ∈ ST) ∈ FLID, '⊻×ST ≜

match C with || ... || ret A ⇒⇒ ret (▲ A, BC )

||
b

>>= : ⇒⇒ ret (⊻ : (), BC )

|| GetTid >>= : ⇒⇒ TI(=, : (=), BC )

|| Put(BC ′) >>= : ⇒⇒ TI(=, : (), BC ′)

|| Get >>= : ⇒⇒ TI(=, : (BC ), BC )

CI(%, (2ℎ, BC ) ≜ SI(%, (2ℎ (0, dom(% ) \ {0}), BC )

SI(% ∈ TPool, ( ∈ SFL, BC ∈ ST) ∈ FL ≜

match ( with || ... || ret A ⇒⇒ ret A

|| Exec(=) >>= : ⇒⇒ match % (=) with || None ⇒⇒ stuck

|| Some C ⇒⇒ G←TI(=, C, BC ) ; match G with

|| ▲ A, BC ′ ⇒⇒ SI(% [= ̸↦→], : (Some A ), BC ′)

|| ⊻ C: , BC
′ ⇒⇒ SI(% [= ↦→ C: ], : (None), BC

′)

Fig. 5. Definitions of the thread/scheduler language TFL/SFL and the interpreters CI, SI, TI.

Threads. We define a thread as a procedure in TFL, and a thread pool as a finite map from thread
ids to TFL. TFL extends FLwith shared states among threads (e.g.,memory) and concurrency features.
The state ST is parameterized for flexibility, and TFL defines the Get/Put constructors to handle
shared state. TFL also has constructors for concurrency,

b
(Yield) and GetTid:

b
enables a thread

to yield to the scheduler, and GetTid returns the thread id of the current thread.

Scheduler. We define a scheduler as a program in SFL, parameterized by the initial thread id and
a finite set of thread ids, Fin(th). SFL extends FL with the Exec(=) constructor, which executes the
thread with id =. When a thread executes, it proceeds until it yields with

b
or terminates with

ret, upon which control is returned to the scheduler; this process repeats until the thread pool
is empty (or a thread gets stuck). One advantage of modeling the scheduler as a program is that
we can implement various scheduling policies in SFL, and we can fix an ideal fair scheduler for an
operational spec of fair schedulers.

Interpreting Concurrency. A concurrent system is interpreted into a FL program by the scheduler
interpreter SI and the thread interpreter TI. The interpreters leave the common constructors (FAIR,
PICK, Obs) as they are and only interpret the added constructors, such as Get, Put, and

b
. We focus

on the most important detail: how the thread interleavings are realized by the interpreters.
The thread interpreter TI enables thread interleaving using the decorated return type '⊻ . It is a

disjoint union of two cases, (8) termination with a value A (▲ A ) and (88) yield with a continuation
C (⊻ C ). By distinguishing the two cases, the scheduler can correctly update the thread pool, as
described in the interpreting rule for Exec(=) in SI: First, the scheduler executes thread = and waits
for it to yield, which returns a decorated value in '⊻ together with an updated shared state. Then
the scheduler inspects the decorated value to (8) kick out a terminated thread (▲) or (88) update
the thread pool with the continuation of the yielded thread (⊻). Therefore, the scheduler tracks the
continuation of each thread, being able to interleave the execution of threads in the pool. All in all,
the concurrency interpreter CI interprets a concurrent system into a FL program.

5.2 Scheduler Fairness, Operationally

Scheduler fairness guarantees that every thread eventually gets scheduled infinitely often. We
define scheduler fairness operationally by defining a fair specification for a scheduler FAIRSch (Fig.
6), and say that a scheduler guarantees scheduler fairness when it refines FAIRSch.

A Spec for Fair Schedulers. FAIRSch abstracts what one would expect from a scheduler through
nondeterminism (PICK) and mathematical sets: it is a loop that terminates when all the threads
have terminated (L6), executing a single thread each iteration. What makes it an abstract and fair

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 139. Publication date: June 2023.



139:14 Dongjae Lee, Minki Cho, Jinwoo Kim, Soonwon Moon, Youngju Song, and Chung-Kil Hur

FAIRSch(= ∈ th, CℎB ∈ Fin(th)) ∈ SFL ≜

loop { G← Exec(=) ; match G with //L1

|| None ⇒⇒ =′← PICK( {< |< ∈ CℎB ∪ {=}}) ; //L2

CℎB′ := CℎB ∪ {=} \ {=′ }; //L3

FAIR( [=′ ↦→ good, CℎB′ ↦→ bad]) ; //L4

= := =′; CℎB := CℎB′; //L5

|| Some A ⇒⇒ if CℎB = ∅ then ret A //L6

else =′← PICK( {< |< ∈ CℎB }) ; //L7

CℎB′ := CℎB \ {=′ }; //L8

FAIR( [=′ ↦→ good, CℎB′ ↦→ bad]) ; //L9

= := =′; CℎB := CℎB′ } //L10

FIFOSch(= ∈ th, CℎB ∈ Fin(th)) ∈ SFL ≜

@ := set2queue(CℎB) ;

loop { G← Exec(=) ; match G with

|| None ⇒⇒ (=, @) := pop(push(=, @)) ;

|| Some A ⇒⇒ if @ = [] then ret A

else (=, @) := pop(@) ; }

set2queue ∈ Fin(th) → queue th

pop ∈ queue �→ � × queue �

push ∈ � × queue �→ queue �

Fig. 6. Definition of a spec of fair schedulers FAIRSch and a simple round-robin scheduler FIFOSch.

OTFLID, ', ST
coind
= || Call(5 = ∈ string, 0A6B ∈ list Val) >>= (: ∈ Val→ OTFL) || ...

" ∈ ModID, ST ≜ {(init, funs) ∈ ST × (string
fin
−−⇀ (list Val→ OTFLID, Val, ST)) }

Config ≜ th
fin
−−⇀ (string × list Val) Load ∈ Config→ Mod→ TPool

≲< ∈ P(Mod ×Mod) "1◦"2 ∈ ModID1+ID2, ST1×ST2 "1 ["2 ] ∈ ModID1+ID2, ST1×ST2
"1◦"2 ≲< "2◦"1 "1 ≲< "2 → "◦"1 ≲< "◦"2 "C ≲< "B → "2 ["C ] ≲< "2 ["B ]

Fig. 7. Definitions of our module system and properties of the module simulation.

spec is the fact that it schedules threads non-deterministically, hiding implementation details such
as queues (L2, L7); and ensures fairness by invoking bad for the unscheduled threads (L4, L9).
We now present our formalization of scheduler fairness:

Definition 5.1 (Scheduler Fairness). We say a scheduler (2ℎ guarantees scheduler fairness when
IsFairSch ((2ℎ) holds. IsFairSch is defined as follows:

IsFairSch((2ℎ) ≜ ∀% BC . CI(%, (2ℎ, BC) ⊑ CI(%, FAIRSch, BC)

Example. To illustrate a concrete scheduler that guarantees scheduler fairness, we present a
simple round-robin scheduler FIFOSch (Fig. 6). This scheduler uses a queue to schedule the threads
in a first-in-first-out manner. Since every thread always gets scheduled after other threads in the
thread pool get scheduled, which happens only finitely many times, it is clear that this scheduler
guarantees fairness. We formally establish such a guarantee using the above definition:

Theorem 5.2 (FIFOSch is Fair). IsFairSch (FIFOSch) holds.

This theorem states that FIFOSch fairly refines FAIRSch, which corresponds to fairness validation:
we wish to show that FIFOSch satisfies the fairness requirements set by FAIRSch using simulation.
Thus the key rule application in the proof of Theorem 5.2 becomes SIMFS presented in §2.3, and the
main challenge is to find a suitable value of c′ to update the fairness counter with. In the case of
FIFOSch, c′ can be set to the maximum number of threads, denoted" : intuitively, the FIFO queue
cannot contain more than" threads whenever a thread is enqueued. Thus a thread scheduled via
FIFOSch can only trigger less than " bad events within the proof before it gets scheduled and
triggers a good event: using" as the value of c′ when applying SIMFS captures this intuition.

6 MODULE SYSTEM AND FAIR SPECS

For reusability and modularity, FOS provides a module system (Fig. 7) inspired by [Gu et al. 2015]
that comprises (8) module type Mod, consisting of module-local state and (possibly open) module
functions, (88) linking operation ◦ for modules, and (888) close operation"1 ["2] that closes open
functions in a module"1 upon getting a module"2. Open module functions are written in OTFL,
which extends TFL with Call; the close operation "1 ["2] interprets Call(5 =, 0A6B)s in "1 by
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substituting them with the corresponding TFLs in"2. Also, we define a configuration Config, which
maps each thread id to a function name and arguments. Load takes a configuration and a module,
initiates TFL for each thread by the function name and arguments, and outputs a thread pool.
What underlies the power of modularization provided by our module system is the module

simulation ≲< . Module simulation requires the user to prove thread-local simulation (see §7) for
each pair of functions within the source-target modules, and establishes the refinement. Since the
module linking and close operations respect ≲< (Fig. 7), this result implies contextual refinement.

Theorem 6.1 (Adeqacy of Module Simulation). For a pair of modules"C and"B , if"C ≲< "B

holds, then for any configuration ? ∈ Config, refinement under scheduler fairness holds:

CI(Load ? "C , FAIRSch, "C .init) ⊑ CI(Load ? "B , FAIRSch, "B .init)

6.1 Memory Modules and Memory Fairness

One key example of the module system is memory modules inspired by [Song et al. 2023]. Defining
memory models as modules grants us the flexibility required to instantiate concurrent programs
with different kinds of memory models, e.g., with a SC memory module or a weak memory module.

Then, as discussed in §3.1, one can prove that the ticket lock module under either SC / weak
memory refines the spec. However, proving that the refinement holds under weak memory requires
an extra fairness assumption: memory fairness [Lahav et al. 2021]. This is because, under weak
memory, a value written to memory must be propagated for other threads to read it (e.g., by a cache
coherence protocol)—which is not always guaranteed: a thread may never read the most recent
update under a buggy protocol, which may render a thread unable to acquire a lock because it
cannot read the most recent service value! Memory systems that rule out such cases are said to
guarantee memory fairness, and threads eventually obtain newer values under memory fairness.
To model memory fairness in FOS, we develop a fair weak memory module FWMM under view

semantics, a “promise-free” fragment of the promising semantics [Kang et al. 2017; Lee et al. 2020]
without fences, which can be also seen as a fragment of an operational version of RC11 [Lahav et al.
2017]3. In view semantics, each memory location has a history of written values with timestamps.
Each thread has its own view of memory; intuitively, the view points to the most recently propagated
value to that thread and increases monotonically following execution. A thread can only read the
same or newer values than its current view, and can write to memory with newer timestamps than
the current view. The following shows an example memory view for some thread : and location - :

- : E0 E1 E2 E3 E4 E5 E6 ... E=

timestamp : C0 C1 C2 C3 C4 C5 C6 ... C=

In the figure, :’s current view for - is C2 and there are newer values that have not yet propagated
to : (C3 ~ C=). When thread : accesses - , it can update its timestamp to one of C2 to C= .
Based on the figure, we demonstrate how we encode memory fairness in our model. Suppose

that thread : reads from - , which resulted in updating its timestamp at - from C2 to C4. At this
moment, bad is invoked for every unpropagated timestamp, i.e., FAIR({C8 | 5 < 8 ≤ =} ↦→ bad) is
triggered. This guarantees that every timestamp is eventually propagated to the thread : upon
continuous access to - since infinite continuous bad is unfair.
Returning to the ticket lock example from §3, we can prove that a ticket lock refines ABSLock

thanks to the fairness guarantee of FWMM:

3In the Coq development, we adopt the model developed in [Cho et al. 2022].
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Theorem 6.2 (TicketLock is Fair). TicketLockFWMM, a ticket lock module under FWMM, is simulated

by the spec ABSLock: TicketLockFWMM ≲< ABSLock. Thus it contextually refines ABSLock.4

6.2 Expressing Various Concepts of Fairness

So far, we have demonstrated that FOS can model fair semantics of various systems, such as
concurrency, library specifications, and memory models. However, the expressiveness of FOS
reaches much further, being capable of describing various concepts of fairness proposed in the
literature. We provide three examples, all assuming scheduler fairness: starvation/deadlock freedom,
strong/weak fairness, and readers-writers problem.

Starvation/Deadlock Freedom. Starvation/Deadlock free concurrent objects guarantee certain
progress of threads accessing the object: starvation freedom guarantees that every thread eventually
makes progress, and deadlock freedom guarantees that some thread eventually makes progress [Her-
lihy and Shavit 2011]. We can express these properties in FOS, as illustrated by the following (-++
is executed atomically):

def incrmax () = ret -++

def incrmin () =
while(PICK(B)) { FAIR( [U ↦→ bad]);

b
; }

FAIR( [U ↦→ good]); ret -++
(INCR)

One can easily see that incrmax () guarantees starvation freedom, since any thread calling it imme-
diately returns. More interesting is incrmin (), which guarantees deadlock freedom by imposing
fairness to single index U : if every callee thread gets stuck in the loop, [U ↦→ bad] accumulates
indefinitely. Hence by fair semantics, some thread will eventually get out of the loop, returning
with the wanted value. However, that thread invokes a [U ↦→ good] before returning, which resets

the accumulated up bads; so other threads stuck in the loop are not guaranteed to escape the loop.

Strong/Weak Fairness. Strong/Weak fairness is about progress of threads under constraints: strong
fairness guarantees that "every thread that is enabled infinitely often gets its turn infinitely often",
while weak fairness guarantees that "every thread that is continuously enabled gets its turn infinitely
often" [Baier and Katoen 2008]. In general, this means that threads can make progress (cf. gets its
turn) only when some condition is satisfied (cf. enabled). Then, each constraint can be expressed in
FOS as the following (- -- is executed atomically):

def decrst () =
= = GetTid; , =, ∪ {=};
while(- ≤ 0) {

b
; }, =, \ {=};

FAIR( [= ↦→ good, , ↦→ bad]); ret - --

def decrwk () =
while(- ≤ 0) {

b
; } ret - --

(DECR)

These functions guarantee that they (i) decrement - and return if some increment function (e.g.,
INCR) increments - to a nonnegative number, or (ii) loop infinitely—they are enabled only when
- > 0. Then it is easy to see that decrwk () guarantees weak fairness: if - > 0 remains true (e.g.,
the increment function is always called in between) from some point, namely continuously enabled,
every thread escapes the loop and returns. However, if - becomes 0 infinitely often, the thread may
not be able to escape the loop. On the other hand, decrst () guarantees strong fairness: if - > 0 is
true infinitely often (e.g., the increment function is called infinitely often), some thread escapes the
loop, decreasing - . The escaping thread also invokes [, ↦→ bad] for the threads waiting to get
enabled, thereby ensuring that any waiting thread eventually gets its turn. Note that ABSLock also
guarantees strong fairness since the lock is eventually acquired if it is freed infinitely often; one
can observe that the codes have a similar pattern.

4This ABSLock needs slight modifications from the one under an SC memory, since we need to pass around the view.

However, this detail is solely due to the view semantics, orthogonal to our discussion regarding fairness.
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The Readers-Writers Problem. The Readers-Writers problem is the problem of the mutual exclusion
of several threads accessing a shared resource, where "readers" share the resource with other readers
and "writers" require exclusive access [Courtois et al. 1971]. We simplify the problem to one in
which there is a single shared location - , where readers read from and writers increment. There
are two kinds of problems: Problem 1 states that readers should not be blocked unless a writer is

writing. Using FOS, we can specify an abstract spec that captures problem 1:

def read1 () =
= = GetTid; ' = ' ∪ {=};
while(PICK(B)) { FAIR( [= ↦→ bad]);

b
; }

' = ' \ {=}; FAIR( [=, , ↦→ good]); ret -

def write1 () =
= = GetTid; , =, ∪ {=};
while(PICK(B)) { FAIR( [= ↦→ bad]);

b
; }

, =, \ {=}; FAIR( [=, ' ↦→ good]); -++; ret

(P1)

The spec employs two sets to hold reader(')/writer(, ) threads, and those threads wait in a loop,
invoking a bad for itself for each iteration. What makes this spec interesting is the good events,
each invoked by the opposite class; readers invoke [, ↦→ good] and writers invoke [' ↦→ good].
Intuitively, this means that each class interrupts the other class from making progress, since a good
resets the bads. Therefore, if readers are holding the resource, every reader will eventually make
progress while any writers are blocked, and vice versa when a writer is holding the resource.

On the other hand, problem 2 states that writers should write as soon as possible. In other words,
writers have priority over readers in accessing the resource. As with the previous case, we can
specify an abstract spec that captures problem 2:

def read2 () =
= = GetTid; ' = ' ∪ {=};
while(PICK(B)) { FAIR( [= ↦→ bad]);

b
; }

' = ' \ {=}; FAIR( [= ↦→ good]); ret -

def write2 () =
FAIR( [' ↦→ good]); -++; ret

(P2)

This time, any writer should be able to write as soon as it wants, so it is not blocked by anyone.
However, readers can still be blocked by the writers; thus all writers invoke [' ↦→ good], where '
is the set of blocked readers, to reset the accumulated bads of the readers. Note that [D’Osualdo
et al. 2021] specifies these kinds of properties (some operations can prevent termination of others
while other operations do not) under the name “impedance”.

7 A PROGRAM LOGIC FOR FAIRNESS

In this section, we present a more modular and abstract interface to the simulation technique
presented in §3, which we call Fairness Logic.
Fairness logic tackles two issues with the rudimentary simulation technique presented in §3.2.

First, while the rudimentary technique achieves mostly thread-local reasoning by condensing
all the needed “global” information in the form of cmap, the cmap itself remains a global object
and reasoning around it remains global. Second, the proof of fair refinement often depends on
conditions on ghost variables as shown in §3.2.

Fairness logic addresses these issues with the help of separation logic. Modern separation logic5

solves the first issue by allowing modular reasoning on global state via the notion of ownership
and ownership transfer. Separation logic also allows one to introduce user-defined ghost variables
conforming to certain protocols defined via the theory of Partial Commutative Monoids (PCM),
solving the second issue: our examples indeed reuse a large body of theory previously developed
around PCMs [Jung et al. 2018].

5We use a non-step-indexed variant of Iris [Jung et al. 2015] resource algebra, developed in CCR [Song et al. 2023].
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⊵ (8 ∈ ID, > ∈ Ordinal)
⊵-sep
⊵ (8, >0 ⊕ >1) ⊣⊢ ⊵ (8, >0) ∗ ⊵ (8, >1)
mono
(> ≥ >′) ∗ ⊵ (8, >) ⊢ ¤|⇛⊵ (8, >′)

win-src
⊵ (8, >) −∗ B8<� (&, :B , :C )

B8<� (&, FAIR( [8 ↦→ good]) ; :B , :C )

lose-src
⊵ (8, 1) ∗ B8<� (&, :B , :C )

B8<� (&, FAIR( [8 ↦→ bad]) ; :B , :C )

Rules for source FAIR

♦@∈(0, 1] (8 ∈ ID, = ∈ N)

♢(8 ∈ ID) ♢th ≜ ∀8 . ♢(th8 )

♦(8) ≜ ∃=. ♦1 (8, =)

♦-sep
♦@0+@1 (8,<8= (=0, =1)) ⊣⊢ ♦@0 (8, =0) ∗ ♦@1 (8, =1)

dec
♦@ (8, =) ∗ ♢(8)

¤|⇛∃=′. ♦@ (8, =
′) ∗ (=′ < =)

lose-tgt
♢(8) −∗ B8<� (&, :B , :C )

B8<� (&, :B , FAIR( [8 ↦→ bad]) ; :C )

win-tgt
♦(8) ∗ (♦(8) −∗ B8<� (&, :B , :C ))

B8<� (&, :B , FAIR( [8 ↦→ good]) ; :C )

Rules for target FAIR

yield-src
B8<� (&, :B ,

j
; :C )

B8<� (&,
j

; :B ,
j

; :C )

yield-tgt
1 ∈ B � ∗ (� −∗ ♦(thC83 ) ∗ (♦(thC83 ) −∗ ♢th −∗ B8<� (&, (1 ?

j
: B:8?) ; :B , :C )))

B8<� (&,
j

; :B ,
j

; :C )

Rules for
b

Fig. 8. Core rules of fairness logic.

7.1 Core Rules of Fairness Logic

Core rules of fairness logic are presented in Fig. 8, comprising: rules for (i) executing FAIR() in the
source, (ii) executing FAIR() in the target, and (iii) executing

b
.

Simulation Weakest Precondition. A central notion in our rules is “simulation weakest precondi-
tion” [Gäher et al. 2022]: B8<� (&, :B , :C ) denotes the weakest precondition to simulate :C (target)
against :B (source) with postcondition & , under a relational invariant � shared among threads. In
the reasoning, one can rely on that � holds when it receives control (i.e., at the beginning of the
function and after

b
) and should guarantee that � holds when it transfers control (i.e., at the end of

the function and before
b
). Our simulation weakest precondition satisfies all the standard rules for

simulation argument and weakest precondition, which we omit here.

Rules for executing source FAIR. We start by presenting the fairness assertions used by the source
rules. For the source fairness counters, we provide ⊵(8, >) denoting the right (or, ownership) to
decrement the counter of id 8 by an ordinal > : this assertion is local as it only concerns the id 8

instead of the global cmap. Also, the ⊵-SEP rule gives equivalence between ⊵(8, >0 ⊕ >1) and its
decomposition ⊵(8, >0) ∗ ⊵(8, >1) where ⊕ is the natural sum [Hessenberg 1906] of ordinals. Such a
split resource can then be distributed across threads, ensuring local reasoning even when multiple
threads are accessing the same 8 . ⊵ also enjoys monotonicity on its second argument (MONO).
Now, the WIN-SRC rule says that one gets ⊵(8, >) for > of its choice when winning. Such a

rule is designed with stress on usability: it does not require any ⊵ as a precondition. This in turn
means ⊵ in your frame remains valid after the rule, and this is still sound because under the hood
it increments the counter by > , instead of setting it exactly into > . The LOSE-SRC rule says that it
consumes a right to decrement 8 by one, and actually decrements the counter by one under the
hood. Note how these rules together imposes fairness validation as expected.

Rules for executing target FAIR. Rules for executing target FAIR follow a similar spirit to those for
the source. Nonetheless, the rules are not exactly symmetric because of a different nature between
fairness validation and fairness exploitation.
Fairness assertions that the target rules will use are twofold: (i) ♦@ (8, =) for an id 8 , a fraction

@, and a natural number n denotes knowledge that the counter for 8 is at most = and a fractional
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ownership @ to execute good, and (ii) ♢(8) for an id 8 denotes a “receipt” for decreasing the counter
for 8 by one. As before, we have a rule (♦-SEP) decomposing ♦ but with a twist: since = does not refer
to the value of the counter but instead means the upper bound for the counter, = does not get split
into two when splitting and we take the minimum of the two =s when merging two ♦s. The most
interesting rule in the target side is the DEC rule, concerning fairness exploitation: it consumes a
♦ and a ♢ to produce a ♦with a decreased number. Such a rule coincides with intuitive interpretation
of ♦ and ♢, and allows fairness exploitation since a number cannot decrease indefinitely.
Now, the LOSE-TGT rule says that one gets ♢(8) when id 8 triggers a bad event. Again, such

a rule is designed with usability in mind: a direct, lower-level reasoning would dictate the exact
counter value for 8 before/after execution, but would not be ideal for local reasoning (e.g., when
multiple threads trigger bad events on the same id, some synchronization has to be made to track
the latest value). Here the rule requires nothing in the precondition: this is because it does not
need the exact value of 8 , but only the fact that a decrement has been made. The WIN-TGT rule
consumes the full fraction of ♦ with any value = and returns the full fraction of ♦ with an unknown
value =. Note the difference with WIN-SRC: the counter value for 8 is updated to an unknown value,
and the rule contains the full fraction in the precondition, which is required for soundness.

Rules for executing
b
. Finally, we give rules about executing

b
that are capable of reasoning

about scheduler fairness in a thread-local fashion.
The YIELD-SRC rule allows executing

b
in the source as if it is “skip”, in the presence of the

b
in

the target. Now, consider scheduler fairness: the rule needs to somehow impose fairness validation
regarding scheduler fairness events. For this, instead of baking inWIN-SRC and LOSE-SRC rules into
this rule as-is, we give a much simpler yet expressive enough interface: following Simuliris [Gäher
et al. 2022], we use an inductive-coinductive definition that allows using the YIELD-SRC rule
only finitely unless coinductive progress is made in the YIELD-TGT rule (below). This allows, in
the majority of verification scenarios, the user to completely ignore proof obligations regarding
(scheduler) fairness validation.

On the other hand, the YIELD-TGT rule executes
b

in the target. When 1 is false, it simply
executes

b
on both sides in lock-step with the usual rely-guarantee principle on � (it demands �

to hold before and gives it back after). When 1 is true, it just executes
b

in the target (keepingb
in the source): this flexibility is useful as it allows one to execute multiple target

b
s with a

single source
b
. Now, consider scheduler fairness. Recall that after the current thread, C83 , takes

the control back, a fairness event for winning C83 and losing everyone else is invoked. The rule has
applications of WIN-TGT and LOSE-TGT to this event baked-in, which appears as ♦(thC83 ) and
♢th . ♢th is simply a conjunction of ♢ for all possible thread ids.

Adequacy. Fairness logic satisfies the following two adequacy theorems.

Theorem 7.1 (Contextual Adeqacy). For a pair of module"t,"s, and a relational invariant

� , if the initial states of the modules satisfy � , we have:

(∀ C83 5 E . � ∗ ♦(thC83 ) ⊢ B8<� (� ∗ ♦(thC83 ), "s.funs 5 E, "t .funs 5 E)) =⇒ "t ≲< "s

Here, � ∗ ♦(thC83 ) plays essentially the same rely-guarantee reasoning with the YIELD-TGT rule.

Theorem 7.2 (Whole Program Adeqacy). For a pair of modules"t,"s, a relational invariant

� , a whole-program configuration ? ∈ Config, and a precondition %C83 for each thread id C83 , if the

initial states of the modules satisfy∗C83∈dom(?) ♦(thC83 ) −∗ (� ∗∗C83∈dom(?) %C83 ), we have:
(∀ C83 5 E . (? C83 = (5 , E)) ∗ � ∗ %C83 ⊢ B8<� (� ∗ ♦(thC83 ), "s.funs 5 E, "t .funs 5 E)) =⇒
CI(Load ? "t, FAIRSch, "t.init) ⊑ CI(Load ? "s, FAIRSch, "s .init)
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This theorem additionally allows each thread to have its precondition, %C83 , but can only be used
for whole-program refinement, not for contextual refinement.

We conclude this section with the following remark. While the fairness logic contains only the
minimal core rules, we are gathering confidence that it is powerful enough to handle various inter-
esting examples: our flagship example, presented in the next section, involves non-trivial reasoning
that spans multiple different notions of fairness. We believe further abstract constructs [D’Osualdo
et al. 2021] could be derived on top of fairness logic and leave it as an interesting future work.

7.2 Example using the Fairness Logic

We demonstrate how the fairness logic is applied with a simplified but still illustrative example.
The example focuses on exploiting fairness; for the case of validating fairness, we believe that
the explanation in the previous section should be adequate for actual applications. This section
assumes some familiarity with modern separation logic, e.g., Iris [Jung et al. 2015], and uses the
usual separation logic predicates with minimal explanations.
To show how to use the fairness logic in proofs relying on exploiting fairness, we inspect a

simplified version of CLI, which assumes that memory access is atomic and removes the locks:
b
; - ≔ 42;

b
; do {

b
; G ≔ - ;

b
; } while (G = 0)

b
; print(G);

b
; (SCLI)

This program refines CLS, and the reasoning underlying the proof is similar to the one presented in
§3.2: we construct a tuple that decreases throughout the program execution and perform induction
on it. However, with the power of fairness logic, we can carry out the proof in a thread-local
fashion—the most interesting proof obligation now becomes constructing a shared invariant that
captures the rely-guarantee reasoning.
To begin with, we present an invariant one would set up, but without the fairness assertions:

(- ↦→0) ∨ (- ↦→42 ∗ Ex)

where ↦→ is the usual points-to and Ex is a token for exclusive ownership in separation logic. This
invariant states that the value stored in the memory location - is either 0 or 42, and in the latter
case it also holds the token Ex, which means that thread 1 has written to - : thread 1 starts with Ex
and hands it over to the invariant right after the write to - . Unfortunately, this invariant is too
weak for the proof since it does not capture scheduler fairness; for the while loop in thread 2 to
always terminate, it should be guaranteed that thread 1 will eventually write 42 to - , which in
turn relies on scheduler fairness.
This intuition is precisely captured with a fairness assertion ♦1 (th1, =), representing that the

fairness counter for thread 1 (th1) is at most =. Then a correct invariant would be:

(- ↦→0 ∗ ∃=. (♦1 (th1, =) ∗ =(=))) ∨ (- ↦→42 ∗ Ex) (INV)

where =(=), together with ≤(<), are predicates for monotonicity satisfying the following rules:

=(=) ⊢ =(=) ∗ ≤(=), =(=) ∗ ≤(<) ⊢ (= ≤ <), =(<) ∗ (= ≤ <) ⊢ ¤|⇛=(=)

Intuitively, =(=) denotes the exact value of =, which can monotonically decrease, and ≤(<) denotes
that< is an upper bound of = [Timany and Birkedal 2021]. Then INV states that the value at - is
either 0 or 42, and when it is 0, there is a value = that represents how many times thread 1 can be
starved by the scheduler (♦1 (th1, =)) and monotonically decreases (=(=)).
With INV, we demonstrate the core of the proof that SCLI refines CLS—that the while-loop in

thread 2 always terminates. Let us focus on do {
b
; G ≔ - ;

b
; } while (G = 0). For this piece of

code, we stutter the source with the first
b

during simulation. Then at G ≔ - ; , we destruct INV
and get two cases: (i) - ↦→42 case terminates the loop by making the loop condition false, leaving
(ii)- ↦→0 case, with a variable =, ♦1 (th1, =), and =(=). In this case, we perform (strong) induction
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on = to conclude the proof, and we first obtain ≤(=) from =(=). Next, we proceed to execute
b

using YIELD-TGT and obtain ♢th—note that thread 2 owns ♦(th2) from the start, and we can easily
show the - ↦→0 case to guarantee the invariant INV. Then the loop iterates, almost bringing us to
the state satisfying the induction hypothesis (after a trivial application of YIELD-TGT).
This time, we have ≤(=) and ♢th along with INV, allowing us to finish the induction: we can

obtain =′ which satisfies =′ < = and the induction hypothesis. After destructing the invariant, we
again inspect the - ↦→0 case, where it gives a fresh variable<, ♦1 (th1, <), and =(<). First, =(<)
and ≤(=) gives< ≤ = and case analysis leaves us with< = = case since< < = case concludes the
induction. Next, substituting< with =, we apply DEC to ♦1 (th1, =) and ♢th , obtaining ♦1 (th1, =

′)
where =′ < =. Finally, after updating =(=) to =(=′), we can conclude the induction since =′ < =.

This line of reasoning is seamlessly extended to a tuple instead of a single value. To illustrate
this, consider the following modification:

b
; skip;

b
; - ≔ 42;

b
; do {

b
; G ≔ - ;

b
; } while (G = 0)

b
; print(G);

b
; (SCL’I)

Because of the inserted skip, we now need to incorporate the number of remaining
b
s in thread

1, denoted ; , into the induction (as we did in §3.2). To encode ; in the invariant, we use the usual
authoritative assertions •(;) and ◦(;), satisfying the following rules [Jung et al. 2018]:

•(0) ∗ ◦(1) ⊢ (0 = 1), •(0) ∗ ◦(1) ⊢ ¤|⇛•(2) ∗ ◦(2)

Then an invariant for proving that SCL’I refines CLS is:

(- ↦→0 ∗ ∃=, ; . (♦1 (th1, =) ∗ •(;) ∗ =(;, =))) ∨ (- ↦→42 ∗ Ex) (INV’)

The other half, ◦(;), is owned by thread 1 and tracks the number of remaining
b
s in thread 1. Using

INV’, we can prove the goal with induction; we omit the details, which is similar to the one above.

8 CASE STUDY

Composing all of our results, we can prove the motivating example: CLI using TicketLockFWMM and
under FIFOSch refines CLS under FAIRSch. To state this, we first wrap up each as a module, CLI, tk
and CLS, which contains appropriate functions and an initial state. Then we load the modules with
a configuration ? that maps threads 1 and 2 to corresponding functions, and state the desired
refinement, which we prove by assembling the refinement results by the transitivity of refinement:

CI(Load ? CLI, tk, FIFOSch, CLI, tk .init) ⊑ CI(Load ? CLI, tk, FAIRSch, CLI, tk .init)
⊑ CI(Load ? CLI, abs, FAIRSch, CLI, abs.init)
⊑ CI(Load ? CLS, FAIRSch, CLS .init)

where the first and second refinements are direct applications of Theorems 5.2 and 6.2. Theorem 6.2
and the final refinement are proved using fairness logic (Theorems 7.1 and 7.2). Also, we remark
that client-library modular reasoning manifests itself in the application of Theorem 6.2 at the
second refinement. This result, including the whole theory of FOS, is fully mechanized in Coq.

9 RELATED WORK AND DISCUSSION

Various concepts of fairness have been studied within the literature, including scheduler fair-
ness [Lamport 1977; Lehmann et al. 1981], progress properties for concurrent objects [Courtois
et al. 1971; Herlihy and Shavit 2011; Liang and Feng 2017], weak memory models [Lahav et al.
2021], and model checking [Baier and Katoen 2008].

As shown throughout the paper, the definition of fairness described in Definition 2.1 is general
enough to capture all of these concepts of fairness, which in turn makes these concepts expressible
in FOS. In this section, we describe some pieces of previous work in more detail and compare the
advantages (and disadvantages) that FOS provides as a framework compared to existing work.
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Progress Properties of Concurrent Programs. An interesting line of work in establishing progress
properties of a concurrent program is to prove that a program refines some operational specification
that encodes the desired progress property [Gotsman and Yang 2011]. A prime example is LiLi [Liang
and Feng 2016, 2017], which provides a method to express such specs, then allows users to prove
that a program contextually refines the spec (thereby ensuring that a progress property holds).
However, the specs that LiLi provides do not express fairness directly, and instead employ an

explicit queue of definite actions within the semantics to capture the idea of fairness. LiLi also
does not provide any machinery for verifying clients that rely on fairness assumptions outside of
scheduler fairness—and thus cannot exploit fairness, as we have done in FOS.
Liang et al. [2013] studies relations between all common progress properties and operational

definitions, based on contextual refinements. They prove that each progress property is equivalent
to some specific type of contextual refinement for linearizable objects. We believe that this approach
can be applied to our theory, such that proving contextual refinements can formally establish desired
progress properties, which we leave for future work.

Liveness and Temporal Logics. Fairness shares many similarities with liveness, which states that a
‘good thing’ must eventually happen at some point during the execution of a program: for example,
that a process must ‘get scheduled’ eventually. Such liveness properties are typically encoded via
temporal logics [Owicki and Lamport 1982]—most prominently, linear temporal logic (LTL) [Kesten
et al. 1998]—which state properties that an entire trace of a program execution must satisfy.

We note that while fairness and liveness are similar concepts with many overlapping applications,
the definition of fairness presented in this paper does have differences with the standard notion of
liveness: liveness requires that a good event must happen, while with fairness, it is fine that a good
event does not occur as long as each fairness id only accumulates a finite number of bad events.

Concurrent Separation Logic. Concurrrent separation logics [Brookes 2007; OHearn 2007] extend
modern separation logics with the goal of proving safety properties of concurrent programs. One
notable feature of concurrent separation logics is that they focus on thread-local and compositional
reasoning, in order to reduce proof burdens.

One notable work in this area is TaDA-Live [D’Osualdo et al. 2021], which extends [Rocha Pinto
et al. 2016], a concurrent separation logic for verifying total correctness of client programs using
concurrent objects. TaDA-Live provides fairness-aware specifications of concurrent objects in the
style of Hoare triples, and exploits scheduler fairness during verification, with a focus on proving
that a set of threads terminate under scheduler fairness. Such termination proofs often rely on
induction, where one must identify a decreasing value to perform induction upon (such as the tuple
of values from §3). While abstracted away in this paper, identifying and constructing these values
presents the main challenge in FOS proofs; a major contribution of TaDA-Live is that it provides a
high degree of abstraction to hide this complexity, providing users with a simple proof interface.

However, TaDA-Live cannot provide any guarantees for nonterminating programs: for example,
TaDA-Live cannot be used to express progress properties for programs that loop indefinitely.
TaDA-Live is also only capable of unary reasoning and cannot be used for proving refinement.

There has been work on proving termination-preserving refinement under a fair scheduler using
relational separation logic [Gäher et al. 2022; Tassarotti et al. 2017]. However, such approaches do
not support reasoning about fairness directly, or exploiting fairness.
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