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Concurrent separation logic (CSL) has excelled in verifying safety properties across various applications,

yet its application to liveness properties remains limited. While existing approaches like TaDA Live and Fair

Operational Semantics (FOS) have made significant strides, they still face limitations. TaDA Live struggles to

verify certain classes of programs, particularly concurrent objects with non-local linearization points, and

lacks support for general liveness properties such as "good things happen infinitely often". On the other hand,

FOS’s scalability is hindered by the absence of thread modular reasoning principles and modular specifications.

This paper introduces Lilo, a higher-order, relational CSL designed to overcome these limitations. Our core

observation is that FOS helps us to maintain simple primitives for our logic, which enable us to explore design

space with fewer restrictions. As a result, Lilo adapts various successful techniques from literature. It supports

reasoning about non-terminating programs by supporting refinement proofs, and also provides Iris-style

invariants and modular specifications to facilitate modular verification. To support higher-order reasoning

without relying on step-indexing, we develop a technique called stratified propositions inspired by Nola. In

particular, we develop novel abstractions for liveness reasoning that bring these techniques together in a

uniform way. We show Lilo’s scalability through case studies, including the first termination-guaranteeing

modular verification of the elimination stack. Lilo and examples in this paper are mechanized in Coq.
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1 Introduction
Safety properties (“bad things never happen”) and liveness properties (“good things eventually

happen”) have long been the standard for formulating program properties. Recently, concurrent

separation logic (CSL) has excelled in verifying safety properties, enabling powerful modular

reasoning across applications like Rust type systems [19], relaxed memory concurrency [8, 34],

and distributed systems [26, 37].
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In contrast, CSL’s application to liveness properties has been less extensive with very few existing

work compared to safety properties. Among them, LiLi [29, 30] and TaDA Live [9] are two most

notable approaches: LiLi focuses on the verification of progress properties of concurrent objects, and

TaDA Live develops abstract reasoning principles for proving termination of concurrent programs.

In particular, D’Osualdo et al. [9] observe that liveness reasoning can be carried out with an abstract

notion of obligations that must be fulfilled, which enable thread-modular liveness reasoning.

However, both these state-of-the-art approaches have limitations. LiLi does not provide a mod-

ular specification that can be readily utilized in client proofs, meaning it (P1) lacks intra-thread

modularity. On the other hand, TaDA Live’s scope is also (P2) limited to termination verification,

excluding general liveness properties like "good things happen infinitely often". Additionally, LiLi

and TaDA Live both cannot verify concurrent objects with (P3) non-local linearization points (e.g.,

helping). Moreover, (P4) none of LiLi and TaDA Live are mechanized.

We observe that the limitations of previous approaches comes from their inflexible primitives for

liveness reasoning. As shown by Alpern and Schneider [1], proving a liveness property requires a

well-foundedness argument. To establish such arguments, previous approaches have incorporated

abstractions and complex proof rules as primitives that are strongly tied to the underlying semantics

and utilized in the proof of soundness to construct well-foundedness arguments. This restriction

hinders extending their approaches to more diverse classes of programs.

Based on this observation, we recognize that the recently proposed Fair Operational Semantics

(FOS) [27] enable us to develop CSL for liveness with simple primitives. In particular, FOS develops a

novel approach to scheduler fairness called the fairness counter. Scheduler fairness, which states that

every thread is eventually scheduled, is crucial for verifying liveness properties in most concurrent

programs, and the fairness counter helps us maintain simple yet sufficient primitives that enable us

to reason about scheduler fairness. Lee et al. [27] also developed a CSL for proving refinements

between concurrent programs, but as we show in §2, their approach lacks scalability because (P5)

it does not support inter-/intra-thread modular liveness reasoning.

Contributions. We develop Lilo, a higher-order, relational CSL for liveness with scalable reasoning

principles, applicable to broader classes of programs and fully mechanized in Coq. Our reasoning

principle is based on the following observation: to ensure liveness, the “good thing” must happen

within some finite number of program steps. We implement this principle on top of FOS to leverage

the power of the fairness counters and maintain simple primitives for our logic. In summary:

(1) Lilo facilitates inter-/intra-thread modular liveness reasoning through abstractions called

progress credits, obligation list, and promises (addresses (P5)).

(2) Lilo extends beyond termination to prove general liveness properties, including those involving

non-termination, through refinement proofs between concurrent programs (addresses (P2)).

(3) Lilo incorporates flexible Iris-style invariants [21, 23] and powerful modular specifications that

support non-local linearization points (addresses (P1), (P3), (P5)).

(4) Lilo and verification examples are all mechanized in Coq [28] (addresses (P4)).

We note that Iris-style invariants require higher-order reasoning, for which a standard approach

is step-indexing. However, step-indexing is ill-suited for liveness reasoning and requires extensions

to support liveness, which is still an ongoing area of research [13, 39, 44]. We do not aim to extend

step-indexing to support liveness. Instead, we develop a workaround called stratified propositions

inspired by Nola [31]. This enables higher-order liveness reasoning without step-indexing.

We show Lilo’s scalability via several case studies. In particular, Iris-style safety proofs for

concurrent data structures’ functional correctness extend naturally to functional correctness and
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termination, as shown in our verification of concurrent stacks. Notably, to the best of our knowledge,

we prove the first termination-guaranteeing modular specification for the elimination stack [14].

Outline. §2 provides background on TaDA Live and FOS, motivating Lilo. §3 introduces Lilo’s core

abstractions for reasoning about liveness guarantees made by scheduler fairness. §4 demonstrates

how Lilo enables termination-guaranteeing modular specifications. §5 introduces stratified proposi-

tions, a technique that enables higher-order reasoning without step-indexing. §6 discusses Lilo’s

generalized rules. §7 demonstrates Lilo’s proof scalability through case studies. §8 concludes with

related work. Coq mechanization of Lilo and examples is available on Zenodo [28].

2 Background and Motivation
Lilo is motivated by the abstractions in previous concurrent separation logics (CSLs) for liveness

(§2.1), and built upon Fair Operational Semantics (§2.2, §2.3).

2.1 Concurrent Separation Logics for Liveness
There exists few CSLs for liveness, and LiLi [29, 30] and TaDA Live [9] are the two most notable

approaches. LiLi focuses on the verification of progress properties of concurrent objects by estab-

lishing contextual refinement between two programs, but does not provide modular specifications

(specs) that enable intra-thread modular verification. On the other hand, TaDA Live focuses on

developing abstract reasoning principles and modular termination-guaranteeing specs for library

functions, based on the abstract notion of obligations to be fulfilled.

However, previous approaches currently fall short in verifying important classes of programs.

Non-local linearization point. Both LiLi and TaDA Live does not support non-local linearization

point, a pattern that employs inter-thread cooperation (such as helping) and is widely used in

concurrent data structures such as the ticket lock and the elimination stack (P3). Reasoning about

non-local linearization points requires careful design of logical primitives. For example, TaDA Live

is based on TaDA, and a discussion by da Rocha Pinto [6, §8] shows that extending TaDA to support

helping requires significant changes to the logic because TaDA’s semantics ties the notion of atomic

update to a concrete atomic operation in the implementation. Although supporting non-local

linearization points is considered orthogonal to liveness reasoning in previous works [9, 29, 30],

designing a logic that handles both non-local linearization points and liveness is an open question.

Non-termination. TaDA Live cannot reason about (possibly) non-terminating programs (P2). This

limitation is significant because non-terminating programs pose unique challenges to the liveness

reasoning. For instance, consider the following “infinite message passing” example:

while (1) { 𝑋 := 1;

do { 𝑎 := 𝑋 ; } while (𝑎 = 1); print(𝑎); }
while (1) { 𝑋 := 2;

do { 𝑏 := 𝑋 ; } while (𝑏 = 2); print(𝑏); } (INF-MP)

This program has two threads, where the first and second threads pass messages to each other by

respectively writing 1 and 2 to the shared location 𝑋 , and then wait for the other thread to update

𝑋 in the inner loops. When each thread receives the update, it exits the inner loop and prints the

updated value, which is 2 for the first thread and 1 for the second thread. Moreover, this message

passing is repeated indefinitely by the outer while loop, therefore called “infinite message passing”.

Under scheduler fairness, both threads eventually make progress (i.e., print and start a new

iteration). This is because whenever a thread updates 𝑋 , the other thread eventually reads the

updated value, exits the inner loop, prints, and then starts a new iteration in which it updates

𝑋 . This scenario requires reasoning about indefinite dependencies between liveness assumptions

(“will update 𝑋 ”), and it is unclear how to reason about this with TaDA Live.
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Scheduler non-determinism. LiLi and TaDA Live cannot verify programs that require direct

reasoning about scheduler non-determinism. For example, consider the following example:

while (𝑑 = 0) { lock(𝑥); 𝑑 := 𝐷 ; unlock(𝑥); } 𝐷 := 1; (SCH-ND)

which is a simplified version of a program by D’Osualdo et al. [9, §5.6]. The first thread waits for

the second thread to update the shared memory location 𝐷 in a loop, and it acquires and releases a

spinlock during each iteration. This program is guaranteed to terminate under scheduler fairness

because the second thread will eventually be executed and write 1 to 𝐷 . Consequently, the first

thread will eventually read the updated value from 𝐷 and exit the loop.

However, one cannot carry out this reasoning with the TaDA Live spec of spinlock, which

requires the client to specify an upper bound on the number of calls to the lock function before the

second thread gets scheduled. This bound is determined solely by the scheduler, but TaDA Live

does not provide any means to access this information. LiLi also suffers the same limitation, because

it cannot directly reason about scheduler non-determinism.

How Lilo tackles problems of the previous CSLs. Our core observation is that logical primitives

of LiLi and TaDA Live are not flexible enough to reason about aforementioned classes of programs.

Lilo has simple primitives, i.e., the model of separation logic (such as PCMs), the simulation relation,

and the fairness counter inherited from FOS, and all abstractions and rules are developed on top

of these primitives. This simple set of primitives allow the development of abstractions and proof

rules with fewer restrictions, i.e., separate them from the underlying semantics.

As a result, Lilo adapts Iris’s well-known safety reasoning for “non-local linearization point”

to liveness setting, and we verify a ticket lock in §7.1 and the elimination stack in §7.2. At the

same time, Lilo can handle “non-termination” and “scheduler non-determinism” by leveraging the

refinement-based relational reasoning of FOS, and we verify INF-MP and SCH-ND in §7.3.

2.2 Overview of Fair Operational Semantics
Fair Operational Semantics (FOS) [27] is a style of operational semantics that can express various

notions of fairness. Lilo is built upon FOS, utilizing its programming language, refinement, and

simulation relation. We provide an overview of FOS that can help readers to follow the rest of the

paper, and refer the interested readers to Lee et al. [27] for further detail, in particular §4 and §5.

Language with fairness events. The programming language of FOS supports non-determinism,

modeled with the PICK(𝑋 ) instruction that non-deterministically returns a value from the set 𝑋 ,

and fairness events 𝑓 ∈ {good, bad}, invoked by the FAIR(𝑓 ) instruction. Intuitively, fairness events
define the set of fair execution traces of a program by allowing only finite bads to be invoked until a
good is invoked. Although fairness events can express various notions of fairness, Lilo only utilizes

scheduler fairness. Specifically, fair schedulers can be modeled by invoking a fairness event for each

thread whenever a thread is scheduled. When a thread is scheduled, by invoking a good for the
scheduled thread and a bad for the remaining threads, every thread is guaranteed to be eventually

scheduled because bad cannot continue indefinitely without a good.
Moreover, FOS models concurrency by interleaving semantics where the scheduler picks a thread

to execute and a thread yields to the scheduler. Then, scheduler fairness in FOS is defined as an

abstract program that utilizes the FAIR constructor to express fairness. In addition, the programming

language has the yield constructor Y that a thread can execute to yield to the scheduler, which is

commonly used to make the interleaving explicit [10, 24].

Refinement and simulation relation. In FOS, an implementation program (target) refines a

specification program (source) if the behavior of the target is included in that of the source. The

behavior of a program is the set of observable traces of the program, which includes termination

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 125. Publication date: April 2025.



Lilo: A Higher-Order, Relational Concurrent Separation Logic for Liveness 125:5

and non-termination (therefore the refinement is termination-preserving). What makes FOS special

is the fact that the fairness events invoked by FAIR defines fair traces, enabling fair refinement

that compares only fair behaviors of two programs.

To prove fair refinements, FOS develops a thread-local simulation relation and a technique called

fairness counter. A fairness counter intuitively corresponds to the number of bads that can be

invoked before a good. In the case of scheduler fairness, each thread has its own fairness counter

that decreases when the corresponding thread is not scheduled and resets to an arbitrary number

when it is scheduled. The thread-local simulation relation utilizes the fairness counter to reason

about the FAIR constructor. For further details, please refer to Lee et al. [27, §2].

2.3 Liveness Reasoning in FOS
Lee et al. [27] also develop Fairness Logic, a thread-local program logic designed to prove fair

refinements between source and target programs. Fairness Logic is a relational separation logic

based on simulation weakest precondition [12], which comes with two sets of proof rules, each for

reasoning about the source or the target program.

On the one hand, Fairness Logic’s source-side liveness reasoning is simple thanks to the powerful

simulation rules that abstract away the complexities of scheduler fairness in the source. Moreover,

source programs in refinement proofs are generally much simpler compared to target programs,

which makes source side reasoning straightforward. Therefore, Lilo directly imports these rules.

On the other hand, it is challenging to scale Fairness Logic’s target-side reasoning due to the

lack of the following three principles (P5).

Inter-thread modularity. Fairness Logic’s target-side reasoning principle for liveness is not

modular for multiple threads. In FOS, scheduler fairness can be harnessed through a globally shared

ghost state called fairness counter that assigns a natural number to each thread. The natural number

decreases whenever the associated thread is not scheduled, and scheduler fairness guarantees

that every thread is scheduled before its fairness counter runs out. Fairness Logic develops an

abstraction of fairness counter in the form of separation logic assertions called fairness assertions,

which represent thread-local views of fairness counter. However, despite the fact that fairness

assertions represent thread-local views, liveness reasoning in Fairness Logic breaks this locality by

requiring fairness assertions to be shared with other threads.

For example, consider the following example from Lee et al. [27, §7.2] (slightly modified):

skip; 𝑋 := 1; ret 0 do { 𝑎 := 𝑋 ; } while (𝑎 = 0); ret 𝑎 (MP)

MP terminates as the first thread will eventually be scheduled, process skip, write 1 to the shared

location 𝑋 , and terminate with a return value 0. Similarly, the second thread will eventually read

this updated value, exit the loop, and then terminate with a return value 𝑎 (which will be 1).

To prove the termination of MP using fairness assertions in Fairness Logic, one has to expose

thread-local details to the shared invariant breaking thread-local modularity. Specifically, the shared

proof invariant presented in Lee et al. [27, §7.2] includes a fairness assertion designated to the first

thread, and also encodes the number of remaining instructions for the first thread to reach 𝑋 := 1.
1

Such a proof that exposes thread-local views and depends directly on low-level implementation

details is fragile, and slight modifications to the program can easily break it.

Intra-thread modularity. Fairness Logic’s target-side liveness rules are not modular within a sin-

gle thread, making it difficult to capture liveness guarantees of library functions. In Fairness Logic,

liveness reasoning for library functions depends on fairness assertions, which are often shared

among threads as seen in MP. The ability to reason about such shared assertions is severely limited

1
More precisely, it encodes the number of remaining Y (Yield) instructions, which will be explained in §3.
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in Fairness Logic compared to existing (safety reasoning) logics such as TaDA [7] and Iris [23]. As

a result, it is unclear how to develop modular specs (e.g., Hoare triples) with Fairness Logic.

Indeed, instead of developing modular specs, Fairness Logic proves contextual refinement be-

tween a library module and a spec module and a client of the library needs to inline the spec code to

carry out reasoning. For example, a spec for a spinlock in Fairness Logic is the code of the spinlock

itself, which does not capture liveness properties such as termination conditions of a spinlock.

Nested structure of liveness reasoning. The main complexity in liveness reasoning often rises

from nested structures of liveness arguments, and as pointed out by Lee et al. [27, §9], Fairness Logic

does not provide any abstraction for expressing and reasoning about such structure. For example, to

prove the termination of MP using Fairness Logic, we need to manually construct a logical assertion

representing a monotonically decreasing tuple (𝑙, 𝑛), where 𝑙 represents the number of remaining

instructions for the first thread to execute 𝑋 := 1 and 𝑛 represents the value of the fairness counter

of the first thread. The degree of low-level effort required for the user hinders scaling Fairness Logic

to examples involving more complicated liveness arguments.

How Lilo tackles problems of FOS. Lilo enables scalable “inter-thread modularity” through ab-

stractions called obligation list and promise, which is inspired by TaDA Live, as we show in §3

by proving MP. In addition, Lilo supports flexible “intra-thread modularity” through higher-order

reasoning such as Iris style invariants, and we develop library specs that guarantee functional

correctness and termination in §4 and §7. Also, Lilo facilitates proofs involving “nested structure

of liveness reasoning” by developing a technique called obligation link, as we demonstrate in §4.

3 Liveness Reasoning under Scheduler Fairness
In this section, we introduce the core abstractions of Lilo that enable thread-modular reasoning

about liveness guarantees made by scheduler fairness. We demonstrate the abstractions and rules of

Lilo by proving the termination of the MP program presented in §2.3 as a running example.

Scheduler fairness. We first elaborate the example with yield instructions [27, §5.1]:

Y; skip; Y; 𝑋 := 1; Y; ret 0 do { Y; 𝑎 := 𝑋 ; Y; } while (𝑎 = 0); Y; ret 𝑎 (MP)

The yield instruction Y is a vital primitive in FOS that enables the interleaving semantics of

concurrency: whenever a thread executes Y, it yields to the scheduler, which then decides the next

thread to execute. In contrast, a sequence of instructions without yields is executed atomically.

Moreover, the yield-based interleaving semantics in FOS enables a natural description of scheduler

fairness, which means that the scheduler guarantees that every thread will eventually be scheduled.

As we discussed in §2.3, MP terminates because the first thread (thread 1) eventually writes 1 to

the shared location 𝑋 . Thanks to scheduler fairness, it eventually gets scheduled, and every time it

gets scheduled, it is closer to executing 𝑋 := 1. The second thread (thread 2) reads 𝑋 in a loop. If it

reads 1, it exits the loop and terminates with a return value of 1. If it reads 0, it knows that, thanks

to scheduler fairness, thread 1 is one step closer to being scheduled, and thus, one step closer to

writing 1 to 𝑋 . Therefore, thread 2 cannot read 0 indefinitely, and eventually terminates.

Background: termination proof in FOS. In FOS, we carry out this termination proof by defining

a source program and proving thread-local simulations using fairness assertions. For example,

Y; ret 0 Y; ret 1 , (MPS)

is a possible source program for our proof, where the two threads immediately terminate after a

yield, returning values 0 and 1 respectively. Then, the simulation proof implies that MP refines

MPS, and by the definition of termination-sensitive refinement, implies the termination of MP. As

mentioned in §2.3, FOS provides proof rules in the form of simulation weakest precondition [12],
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cred-new

ℓ, 𝑛 ∈ N

¤|⇛∃𝜅, _𝜅 ⌈ℓ, 𝑛⌉ ∗ ^𝜅 (ℓ, 𝑛)

pc-split

^𝜅 (ℓ, 𝑛1 + 𝑛2)
^𝜅 (ℓ, 𝑛1) ∗ ^𝜅 (ℓ, 𝑛2)

pc-drop

^𝜅 (ℓ2, 1) ℓ1 < ℓ2 𝑛 ∈ N

¤|⇛^𝜅 (ℓ1, 𝑛)

obls-add

Obls
th
(Φ) ∗ ^𝜅 (1, 1) persistent(𝑃)
¤|⇛Obls

th
((𝜅, 𝑃) :: Φ)

obls-fulfill

Obls
th
(Φ) ∗ 𝑃 (𝜅, 𝑃) ∈ Φ

¤|⇛Obls
th
(Φ \ (𝜅, 𝑃))

prom-get

Obls
th
(Φ) (𝜅, 𝑃) ∈ Φ
𝜅
——⋄𝑃

Fig. 1. Selected and simplified rules of Lilo related to liveness obligations.

which are sufficient for the source-side liveness reasoning. Therefore, we directly import the source

side proof rules of FOS into Lilo. On the other hand, proof rules of FOS for the target side liveness

reasoning fail to support thread-modular liveness reasoning, making it difficult to scale.

Termination proof in Lilo. Lilo aims to improve target side liveness reasoning in FOS by devel-

oping abstractions on top of FOS, based on the following observation: to ensure liveness, the “good

thing” must happen within some finite number of program steps.

Specifically, in Lilo, thread 1 is assigned an obligation to write 1 to 𝑋 , and also given a finite

amount of credits that can only monotonically decrease. With this obligation, thread 1 must submit

certain amount of credits whenever it executes a yield, where executing a yield corresponds to

taking a program step in Lilo, until it fulfills the obligation by writing 1 to 𝑋 . Because thread 1 has a

finite amount of credits, it can execute only a finite number of yields before fulfilling its obligation.

Therefore, we can ensure that “writing 1 to 𝑋 ” happens within some bounded number of thread 1’s

execution of yields, where the bound is decided by the initial amount of the credits.

Thread 1 can also let other threads know that it currently holds an obligation to write 1 to 𝑋 .

Then, thread 2 knows that thread 1 is scheduled due to scheduler fairness, and also knows that

thread 1 is getting closer to writing 1 to𝑋 due to the obligation assigned to the first thread. Based on

this argument, thread 2 knows it will eventually read 1 from 𝑋 , exit the loop, and terminate. Lilo’s

abstractions and proof rules capture this argument, enabling thread-modular liveness reasoning.

Formally, we prove the termination of MP by proving refinement between MP and MPS through

a powerful simulation weakest precondition, equipped with flexible Iris style invariants [21] and

rules for thread-modular liveness reasoning. Specifically, to establish refinement between two

programs, we prove 𝑡𝑔𝑡 th

E 𝑠𝑟𝑐 , which is an assertion denoting the weakest precondition for

proving thread-local simulation between 𝑡𝑔𝑡 (target) and 𝑠𝑟𝑐 (source), under invariants represented

by the invariant mask E and the parameterized thread id th.

For the rest of the section, we first show how Lilo ensures that thread 1 writes 1 to 𝑋 using the

notion of obligations. Then we show how Lilo allows thread 2 to eventually read 1 from 𝑋 . Finally,

we close the section with a discussion about the simulation rules of Lilo.

3.1 Ensuring Progress of the First Thread
As we discussed, we need to ensure that thread 1 eventually writes 1 to the shared memory location

𝑋 in order to prove the termination of our running example MP. Lilo enables this reasoning with

two separation logic predicates: progress credits ^𝜅 (ℓ, 𝑛) and obligation lists Oblsth (Φ) (Fig. 1).

Progress credits. In Lilo, a liveness obligation, or simply an obligation, is just an identifier, usually

denoted by 𝜅. Every obligation 𝜅 comes with a finite amount of progress credits, and we use the

cred-new rule to obtain a new obligation 𝜅 and a desired amount (ℓ, 𝑛) of its progress credits
^𝜅 (ℓ, 𝑛) (we introduce the other predicate _𝜅 ⌈ℓ, 𝑛⌉ later, in §3.2). When we have ^𝜅 (ℓ, 𝑛), we say
that we have 𝑛 progress credits of layer ℓ for the obligation 𝜅. For now, we can ignore the layer

part and assume ℓ = 1; we explain the layer part in the end of this subsection.
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Once we obtain ^𝜅 (ℓ, 𝑛), we cannot increase the total amount of ^𝜅 (ℓ, 𝑛); i.e., the total amount

of progress credits for 𝜅 can only monotonically decrease. Additionally, Lilo has a “yield-tax” rule

(explained formally in §3.3): if a thread has an obligation 𝜅, it must submit ^𝜅 (1, 1) whenever it
executes a yield, until the thread fulfills 𝜅. Because we only have a finite amount of ^𝜅 (ℓ, 𝑛) that
we can spend, “yield-tax” ensures that a thread with an obligation 𝜅 can execute only a bounded

number of yields, unless it fulfills 𝜅.

Obligation list. We assign an obligation to a thread using an abstraction called obligation list,

denoted Φ, which is a list of pairs (𝜅, 𝑃) where 𝜅 is an obligation and 𝑃 is a sProp.
2
An obligation 𝜅

is assigned to a thread th together with a proposition 𝑃 that should be fulfilled by the thread, by

adding the pair (𝜅, 𝑃) to the obligation list Φ of thread th. Each thread owns a private obligation list,

and the predicate Oblsth (Φ) means that the thread th currently owns an obligation list Φ. Because
Oblsth (Φ) essentially represents Φ, we overload the term “obligation list” to refer to both of them.

Formally, we use obls-add to add an obligation 𝜅 to eventually establish some predicate 𝑃 to

a thread th’s obligation list. This rule requires progress credits ^𝜅 (1, 1), for the same reason as

“yield-tax” requires ^𝜅 (1, 1); we explain this in §3.2. After thread th establishes 𝑃 , it can remove 𝜅

from its obligation list using obls-fulfill. We note that the propositions 𝑃 added to obligation lists

are persistent, meaning that the proposition can be duplicated, and once a thread establishes 𝑃 , 𝑃

remains true forever. However, this constraint is not a severe drawback because Lilo supports Iris

style invariants that enable us to allocate a persistent invariant when needed.

In addition, a thread can share its obligation by sharing a persistent predicate
𝜅
——⋄𝑃 called a

promise, that can be created using prom-get. Note that the premise is not consumed when a rule

gives a persistent predicate, so Oblsth (Φ) is not consumed by prom-get. Then, a thread can create

and share
𝜅
——⋄𝑃 with other threads to let them know that there is a thread with an obligation 𝜅 to

establish 𝑃 . Later, in §3.2, we show how other threads can rely on
𝜅
——⋄𝑃 to obtain 𝑃 in their proofs.

Termination proof of thread 1. Proving the termination of thread 1 is straightforward because it

does not contain any loops. However, we must establish the liveness argument that “eventually,

the value of 𝑋 is updated to 1”, so that thread 2 can rely on this argument for termination. This

argument is carried out by adding an obligation 𝜅 to thread 1’s obligation list as an initial condition,

and fulfilling it by writing 1 to 𝑋 . We present a proof outline here, without formally introducing

the simulation and invariant rules of Lilo, which we introduce in §3.3.

Concretely, we prove the following thread-local simulations for thread 1 (Sim1):

Obls1 ( [(𝜅, 𝑋 ↦→1

𝑤)]) ∗ ^𝜅 (1, 2) ∗ pend
1/2 ∗ MPI

𝜈 −∗ Y; skip; Y; 𝑋 := 1; Y; ret 0 1

⊤ Y; ret 0

Here, 𝑋 ↦→1

𝑤
and MPI

𝜈
are invariants: 𝐼

𝜈
is a persistent predicate that means we can open the

invariant to obtain a proposition 𝐼 , where 𝜈 is an identifier. However, we must close the invariant

by proving 𝐼 to execute a yield or a ret. For example, we can open 𝑋 ↦→1

𝑤
to obtain a points-to

predicate 𝑋 ↦→1 meaning that the value at 𝑋 is 1. We explain invariants more in §3.3.

The proof invariant MPI is defined as follows:

MPI ≜ ((pend
1/2 ∗ 𝑋 ↦→0) ∨ (shot ∗ 𝑋 ↦→1

𝑤)) (MPI)

where pend𝑞 and shot are the usual oneshot assertions with the following rules (0 < 𝑝, 𝑞 ≤ 1):

pend𝑝 ∗ pend𝑞 ⊢ pend𝑝+𝑞 pend
1
⊢ ¤|⇛shot pend𝑞 ∗ shot ⊢ False persistent(shot)

This invariant describes a state transition system with two states (a) pend
1/2 ∗ 𝑋 ↦→ 0 and (b)

shot ∗ 𝑋 ↦→1

𝑤
, and the oneshot assertions ensure that the transition is one-way, from (a) to (b).

2
The type sProp is the type of propositions in Lilo. We abstract away the details of sProp until we introduce it in §5.
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It is easy to check that the initial condition holds, given that the memory location 𝑋 is initialized to

0, using rules such cred-new and obls-add.

To prove termination, we need to execute the two yields and a skip before the memory write

to 𝑋 : Y; skip; Y; 𝑋 := 1; . Because thread 1 has an obligation 𝜅, Obls1 ( [(𝜅, 𝑋 ↦→1

𝑤)]), by the

“yield-tax” rule, we need to submit ^𝜅 (1, 1) when we execute the two yields. We can apply the

pc-split rule to ^𝜅 (1, 2) in the initial condition and obtain two ^𝜅 (1, 1)s, and submit each of them

when executing the two yields. Also, a skip can be executed in a trivial way.

After executing the two yields and a skip, we reach the memory write:𝑋 := 1; Y; ret 0. To obtain

the points-to predicate, we open the invariant MPI and obtain the disjunction. Using the rules of

oneshot assertions together with pend
1/2 in the initial condition, we obtain the (pend

1/2 ∗ 𝑋 ↦→0)
case and eliminate the other case of the disjunction. Then, we execute 𝑋 := 1; with 𝑋 ↦→ 0 and

obtain 𝑋 ↦→1, and wrap it into a new invariant 𝑋 ↦→1

𝑤
using the invariant rules. At the same

time, we combine the two pend
1/2s to obtain pend

1
, and update it to shot. This allows us to close

the invariant MPI by proving the (shot ∗ 𝑋 ↦→1

𝑤) part of the disjunction.
In addition to this, thread 1 can fulfill its obligation 𝜅 because it established the promised

proposition 𝑋 ↦→1

𝑤
. Using the obls-fulfill rule with Obls1 ( [(𝜅, 𝑋 ↦→1

𝑤)]), we can fulfill 𝜅 and

obtain an empty obligation list Obls1 ( []). Then, the rest of the proof forY; ret 0 is straightforward:

because thread 1 has no obligation, it can execute the last yield without submitting any progress

credits, and terminate by executing ret 0. We note that a thread must have an empty obligation

list and close every invariant to execute ret for soundness.

Extending progress credits with a layer. As we discussed, Lilo’s principle for liveness reasoning
is to bound the number of yields a thread can execute when holding an obligation. If a thread has an

obligation in its obligation list, it must submit a certain amount of progress credits to execute a yield,

until the obligation is fulfilled. Therefore, it is crucial for the user to determine the right amount of

progress credits when using cred-new to get the credits. Then, we have an important question: how

do we choose the number of progress credits? When the number of yields is deterministic, we can

count it and prepare enough amount of progress credits. For the case of thread 1, we need ^𝜅 (1, 2)
to execute the two yields before the memory write.

However, choosing the right number of credits becomes tricky when programs involve non-

determinism. Consider a modified MP, where PICK non-deterministically returns a natural number:

Y; 𝑛 := PICK(N); do { Y; 𝑛−−; } while (𝑛 > 0); Y; 𝑋 := 1; Y; ret 0

Here, the number of yields we need to execute before 𝑋 := 1 is 𝑛 + 2, where n is obtained only after

executing PICK(N). Therefore, we do not know the number of progress credits we need when we

use cred-new to allocate progress credits for the initial condition.

To handle non-determinism, we extend the progress credit with the notion of layer, which

intuitively corresponds to the depth of non-determinism. Given a progress credit ^𝜅 (ℓ, 𝑛), ℓ is
the layer of this credit and the pair (ℓ, 𝑛) represents the amount of progress credits, following the

lexicographical order on the product N × N>0 as demonstrated in pc-split and pc-drop. Therefore,

for our modified code, we can start the proof with ^𝜅 (2, 2), obtain ^𝜅 (1, 1) and ^𝜅 (2, 1) using
pc-split and pc-drop, and execute the first yield using ^𝜅 (1, 1). Then, we execute 𝑛 := PICK(N),
determine 𝑛, and obtain ^𝜅 (1, 𝑛 + 1) by pc-drop. This credit is enough to execute the remaining

yields until 𝑋 := 1, and we can finish the proof for the modified code.

The notion of layer is crucial in Lilo because liveness reasoning for concurrent programs involves

surprising amount of non-determinism. We discuss more instances in the rest of the paper.
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prom-pers

persistent( 𝜅
——⋄ 𝑃 )

prom-progress

€ ∗ 𝜅
——⋄ 𝑃

¤|⇛^𝜅 (0, 1) ∨ 𝑃
cb-pers

persistent(_𝜅 ⌈ℓ, 𝑛⌉ )

cred-ind

_𝜅 ⌈ℓ, 𝑛⌉ ∗ □( (^𝜅 (0, 1) ≡−∗ 𝑄 ) ≡−∗ 𝑄 )
¤|⇛𝑄

Fig. 2. Selected and simplified rules of Lilo related to induction.

3.2 Proving Termination of the Second Thread
The termination of thread 2 depends on the following argument: thread 1 will eventually get

scheduled by scheduler fairness, and thread 1will eventually write 1 to𝑋 . The first part is guaranteed

by the underlying FOS, and the second part is ensured by the rules of progress credits and obligation

lists. In this section, we show how we can carry out this argument in Lilo by introducing two core

rules: prom-progress and cred-ind (Fig. 2).

Lilo’s soundness and prom-progress. We explain the prom-progress rule in depth, because it is

directly related to Lilo’s soundness. To do so, we first need to explain fairness counter (Lee et al. [27,

§2.2]), a logical state of FOS that represents scheduler fairness. Fairness counter fc is a map from

thread ids to natural numbers, assigning a natural number to each active thread. Also, we have the

“yield-fc” rule: whenever a thread th is scheduled, its counter fc(th) is reset to an arbitrary number

and the counter of other threads decrement. FOS ensures that no thread’s counter drops below 0,

meaning that every thread is eventually scheduled, guaranteeing scheduler fairness.

Then, the model of obligation list connects liveness reasoning in Lilo to the fairness counter by

maintaining the following (greatly simplified) global invariant:

Obls
th
( [(𝜅, 𝑃)]) ≈ (∃𝑛. fc(th) = 𝑛 ∗ ^𝜅 (0, 𝑛)) ∨ 𝑃

This invariant is initially established internally through obls-add, which requires ^𝜅 (1, 1) because
the value 𝑛 of fc(th) is a non-deterministically chosen natural number by the scheduler—for any 𝑛,

we can use pc-drop to obtain ^𝜅 (0, 𝑛). Also, by the “yield-fc” rule, whenever the thread th yields and
is scheduled again, its fairness counter resets to an arbitrary number, breaking the global invariant.

Therefore, we require the thread to submit ^𝜅 (1, 1) when it yields, and use it to re-establish the

global invariant. The “yield-tax” rule precisely captures this principle.

Lilo provides an abstraction for scheduler fairness, in the form of a predicate € called scheduler

credit. As we will see in §3.3, we have “yield-sched”: we obtain a € whenever a thread returns from

a yield, i.e., when it is scheduled. A scheduler credit and the fairness counter roughly has this rule:

∀th𝑛. (fc(th) = 𝑛) ∗ € ⊢ ∃𝑛′ . (fc(th) = 𝑛′) ∗ 𝑛′ < 𝑛

Therefore, we can spend a € to decrement the counter of an active thread th. Using this rule and

the model of obligation list, we obtain the following rule:

((fc(th) = 𝑛 ∗ ^𝜅 (0, 𝑛)) ∨ 𝑃) ∗ € ⊢ (∃𝑛′ . (fc(th) = 𝑛′ ∗ ^𝜅 (0, 𝑛′)) ∗ ^𝜅 (0, 1)) ∨ 𝑃

which corresponds to the prom-progress rule. A promise
𝜅
——⋄𝑃 roughly says that ((fc(th) = 𝑛 ∗

^𝜅 (0, 𝑛)) ∨ 𝑃) is in the global invariant, and this rule keeps the global invariant.

However, the user does not need to be aware of this underlying model, and simply use prom-

progress to enjoy the guarantees of scheduler fairness. The rule requires a scheduler credit €

and a promise
𝜅
——⋄𝑃 . Intuitively, a promise

𝜅
——⋄𝑃 means that there exists some thread th that

makes progress towards establishing 𝑃 . Therefore, prom-progress captures the following intuition:

whenever thread th is scheduled, it is either making progress for 𝜅 (the ^𝜅 (0, 1) case), or th has

fulfilled the promise by establishing 𝑃 (the 𝑃 case).

Induction principle. In Lilo, when a thread makes some progress for an obligation, other threads

can rely on this progress through the induction principle cred-ind. This rule is governed by the

credit bound predicate _𝜅 ⌈ℓ, 𝑛⌉, which is persistent knowledge saying that the maximum number

of progress credits for 𝜅 is (ℓ, 𝑛), as the notation ⌈ℓ, 𝑛⌉ indicates. We obtain _𝜅 ⌈ℓ, 𝑛⌉ when we
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create a new obligation 𝜅 using cred-new, together with the progress credit ^𝜅 (ℓ, 𝑛). Intuitively,
the cred-ind rule says that the credit bound _𝜅 ⌈ℓ, 𝑛⌉ bounds the number of loop iteration, enabling

induction. The rule is a direct consequence of the definition of _𝜅 ⌈ℓ, 𝑛⌉, and interested readers can

refer to our Coq development [28].

The cred-ind rule roughly says that to prove 𝑄 , we can instead prove 𝑄 while assuming

(^𝜅 (0, 1) ≡−∗ 𝑄), given _𝜅 ⌈ℓ, 𝑛⌉. Here, 𝑃 ≡−∗ 𝑄 is a standard concept in Iris called view shift and

can be thought of as a logical update from 𝑃 to 𝑄 . The rule needs a persistence modality □ for

soundness, but this is usually not a problem if we set up 𝑄 appropriately. Altogether, cred-ind lets

us finish the proof if we can obtain a progress credit ^𝜅 (0, 1) and re-establish the proof goal to 𝑄 .

As we will demonstrate shortly, we use cred-ind to prove termination of a loop. Specifically, we

set up 𝑄 to be the simulation weakest precondition for a loop with a loop invariant, and show that

we can obtain ^𝜅 (0, 1) by iterating the loop once. We remark that cred-ind provides a significantly

simpler interface to reasoning about loops compared to the while-rules of LiLi (Liang and Feng

[30, §7.2]) and TaDA Live (D’Osualdo et al. [9, §4.6]). The complexity of while-rules in these logics

stems from scheduler fairness and preventing circularity. In Lilo, scheduler fairness is abstracted

away from the user in the form of the scheduler credit and the prom-progress rule.

In contrast, circularity in a liveness logic is a problem that the user must address directly: a

representative example is a deadlock, where thread 1 waits for thread 2, and thread 2 waits for

thread 1, and it is the user’s responsibility to prevent such deadlocks. In Lilo, such responsibility

surfaces when allocating a new liveness obligation: the user must allocate large enough progress

credits for an obligation 𝜅 to “pay taxes” for the yields (“yield-tax”). We also need to pay progress

credits for 𝜅 when carrying out an induction proof for a loop with the cred-ind rule, which means

that if _𝜅′ ⌈ℓ, 𝑛⌉ bounds the loop, we must have greater amount of progress credits for 𝜅 than (ℓ, 𝑛).
This results in a strict order between how the two obligations 𝜅 and 𝜅′ can depend on each other

(𝜅 can depend on 𝜅′, but not vice versa), preventing circularity between obligations.

Termination proof of thread 2. Proving the termination of thread 2 requires an induction argu-

ment to prove the termination of the while loop, which relies on thread 1’s obligation to write 1 to

𝑋 . This obligation is shared with thread 2 in the form of a promise
𝜅
——⋄ 𝑋 ↦→1

𝑤
. This is obtained

from thread 1’s initial condition, Obls1 ( [(𝜅, 𝑋 ↦→1

𝑤)]), and prom-get.

Concretely, we prove the following thread-local simulations for thread 2 (Sim2):

Obls2 ( [])∗ MPI

𝜈 ∗ 𝜅
——⋄ 𝑋 ↦→1

𝑤 ∗ _𝜅 ⌈1, 3⌉ −∗ do {Y; 𝑎 := 𝑋 ; Y; } while (𝑎 = 0); Y; ret 𝑎 2

⊤ Y; ret 1

Thread 2 has no obligation, shares the invariant MPI with thread 1, and has the credit bound

_𝜅 ⌈1, 3⌉. It also has
𝜅
——⋄ 𝑋 ↦→1

𝑤
, saying that some thread promised to 𝑋 ↦→1

𝑤
,

We start by applying the induction rule cred-ind to the do-while loop with _𝜅 ⌈1, 3⌉ and obtain

the following inductive hypothesis (where 𝑙𝑜𝑜𝑝 ≜ do { Y; 𝑎 := 𝑋 ; Y; } while (𝑎 = 0)):

H ≜ ^𝜅 (0, 1) ≡−∗ (Obls2 ( []) −∗ 𝑙𝑜𝑜𝑝 ; Y; ret 𝑎 2

⊤ Y; ret 1)

Both
𝜅
——⋄ 𝑋 ↦→1

𝑤
and _𝜅 ⌈1, 3⌉ are persistent so we can keep them after applying cred-ind.

We execute the firstY and open the invariant MPI

𝜈
to get the points-to predicate. The invariant

has a disjunction, where the proof for the second case (shot ∗ 𝑋 ↦→1

𝑤) is trivial: we have 𝑋 ↦→1

so we can terminate the do-while loop and execute the rest of the code to finish the proof.

On the other hand, the first case with (pend
1/2 ∗ 𝑋 ↦→ 0) requires an induction argument. In

this case, we obtain 𝑎 = 0 from the memory read, close the invariant, and execute Y. At this point,

“yield-sched” grants us a scheduler credit €, and since the loop condition 𝑎 = 0 is true, we come

back to the original state, 𝑙𝑜𝑜𝑝; Y; ret 𝑎.
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inv-alloc

𝜈 ∈ N
𝐼 ≡−∗ 𝐼

𝜈
inv-pers

persistent( 𝐼 𝜈 )

inv-open

𝐼
𝜈 ∗ (𝐼 −∗ 𝑡𝑔𝑡 th

E\{𝜈 } 𝑠𝑟𝑐)

𝑡𝑔𝑡 th

E 𝑠𝑟𝑐

inv-close

𝐼 ∗ 𝐼
𝜈 ∗ 𝑡𝑔𝑡 th

E 𝑠𝑟𝑐

𝑡𝑔𝑡 th

E\{𝜈 } 𝑠𝑟𝑐

mem-read

(𝑋 ↦→𝑣) ∗ ((𝑋 ↦→𝑣) −∗ 𝑘𝑡 [𝑎 := 𝑣] th

E 𝑠𝑟𝑐)
𝑎 := 𝑋 ; 𝑘𝑡 th

E 𝑠𝑟𝑐

mem-write

(𝑋 ↦→𝑣) ∗ ((𝑋 ↦→𝑤) −∗ 𝑘𝑡 th

E 𝑠𝑟𝑐)
𝑋 := 𝑤 ; 𝑘𝑡 th

E 𝑠𝑟𝑐

yield-tgt

(Obls
th
(Φ) ∗ ∗

𝜅∈dom(Φ)
^𝜅 (1, 1)) ∗ ((Obls

th
(Φ) ∗ €) −∗ 𝑘𝑡 th

⊤ Y; 𝑘𝑠 )

Y; 𝑘𝑡 th

⊤ Y; 𝑘𝑠

sim-term

Obls
th
( []) 𝑟𝑡 = 𝑟𝑠

ret 𝑟𝑡 th

⊤ ret 𝑟𝑠

Fig. 3. Selected and simplified simulation rules and invariant rules.

Now, we use € with
𝜅
——⋄ 𝑋 ↦→1

𝑤
to obtain ^𝜅 (0, 1) ∨ 𝑋 ↦→1

𝑤
through prom-progress. Again,

the proof becomes trivial with the second case 𝑋 ↦→1

𝑤
, because we know 𝑋 ↦→1 which is enough

to terminate the loop. For the other case with ^𝜅 (0, 1), we use the inductive hypothesisH together

with ^𝜅 (0, 1) to finish the proof by induction.

3.3 Thread-Local Relational Reasoning with Simulation Weakest Precondition
Lilo enables thread-local reasoning through simulation weakest precondition, which supports

Iris-style invariants [21, 23] that is significantly more flexible compared to the invariants in

Fairness Logic. Note that Lilo’s invariant system is implemented with stratified propositions, in-

spired by Nola [31]. We discuss stratified propositions in §5 and abstract them away for now,

presenting simplified proof rules of Lilo in this subsection (Fig. 3).

Invariant rules. Invariants enforce user-defined protocols on the shared state through rely-

guarantee reasoning—in the simulation proof, we can rely on invariants associated with E when

the thread receives control (e.g., after Y) and must guarantee invariants associated with E when it

passes control (e.g., before Y). We can add a proposition 𝐼 to invariants with a name 𝜈 using the

inv-alloc rule, and any invariant is persistent, i.e., , stays true forever, once it is allocated.

Once 𝐼 is added to invariants, we can rely on 𝐼 using the inv-open rule: the rule says that we

can open the mask (E to E \ {𝜈}) to obtain 𝐼 . On the other hand, we must establish 𝐼 and use

the inv-close rule to close the mask (E \ {𝜈} to E), which guarantees the invariant 𝐼 . We use the

⊤ mask to represent that every invariant used in the proof is established and that the mask is

completely closed. Finally, we note that unlike Iris invariant rules, our invariant rules don’t have a

later modality because we do not use step-indexing.

Simulation rules. Most of the rules for proving the simulation weakest precondition are stan-

dard [12, 27]. For example, to execute the memory read operation from 𝑋 , we can use the mem-read

rule with a points-to predicate 𝑋 ↦→𝑣 , which returns the points-to predicate and brings us to the

next instruction while replacing the local variable 𝑎 with the value 𝑣 . On the other hand, we can

execute the memory write operation to 𝑋 using mem-write, which requires a points-to predicate

𝑋 ↦→𝑣 , executes the write operation, and returns the points-to predicate with the written value.

The central simulation rule of Lilo is the yield-tgt rule, which is a simulation proof rule to

execute a yield Y in the target. yield-tgt serves two main purposes.

The first purpose is to ensure that the rely-guarantee nature of invariants is enforced. When

executing yield-tgt, it requires a ⊤mask, which forces one to close (guarantee) all invariants before

yielding control back to the scheduler. Conversely, we can open (rely on) any invariant when the

thread receives the control back because the rule ensures the ⊤ mask (th

⊤ in the premise).
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The second purpose is to enable reasoning about liveness and scheduler fairness, i.e., yield-tgt

validates the “yield-tax” and “yield-sched” rules introduced earlier. Specifically, when executing

yield-tgt, we need to submit ^𝜅 (1, 1) for each obligation in the obligation list Oblsth (Φ) of the
executing thread, where we use dom(Φ) to denote the list of obligation ids in Φ. This corresponds
to the “yield-tax” rule. In addition, the thread receives a scheduler credit € when it resumes its

execution after it returns from the yield. This corresponds to the “yield-sched” rule.

To finish off a simulation, the return rule sim-term says that simulation between two return

statements holds only when the return values are the same and the obligation list is empty. Requiring

an empty obligation list prevents threads from terminating without fulfilling their obligations,

which would break the rely-guarantee reasoning of the obligation list and promise.

Adequacy. Adequacy of Lilo is a consequence of the adequacy theorem of Fairness Logic (Lee et al.

[27, Theorem 7.2]) and the algebra of the underlying PCMs of the liveness assertions. Specifically, the

simulation weakest precondition of Lilo is developed on top of Fairness Logic by developing PCMs

and global invariants for Lilo invariants and obligation lists. Fairness Logic itself is developed on top

of the thread-local simulation relation of FOS, which implies termination-preserving fair refinement.

Altogether, Lilo proves fair refinements, denoted ⊑, as the following (simplified) theorem states:

Theorem 3.1 (Adeqacy). For source and target threads 𝑠𝑖 and 𝑡𝑖 with thread ids 𝑖 ∈ 𝐾 = {1, ..., 𝑘},
if the initial physical and ghost states satisfy the initial invariant, we have

∗𝑖∈𝐾 Obls𝑖 ( []) ≡−∗⊤ (∗𝑖∈𝐾 𝑡𝑖 𝑖⊤ 𝑠𝑖 ) ⇒ 𝑡1 ... 𝑡𝑘 ⊑ 𝑠1 ... 𝑠𝑘

where 𝑎1 ... 𝑎𝑘 denotes the behavior of the composition of threads 𝑎𝑖 .

We note that the adequacy theorem allows us to perform thread-local simulations: to prove the

refinement ⊑ between two programs, we can prove 𝑖⊤ of each thread separately. Also, the theorem

allows us to distribute preconditions to each thread through the view shift ≡−∗⊤.
To demonstrate this, we briefly discuss how to prove MP ⊑ MPS using the two results Sim1 and

Sim2. We first apply Theorem 3.1 to MP ⊑ MPS and get∗𝑖∈{1, 2} Obls𝑖 ( []) ≡−∗⊤ (∗𝑖∈{1, 2} 𝑡𝑖 𝑖⊤ 𝑠𝑖 )
where 𝑡𝑖 and 𝑠𝑖 are the threads of MP and MPS. Then, from the initial state, we derive preconditions

of Sim1 and Sim2, which is possible thanks to the view shift. In particular, we use inv-alloc to obtain

the invariant MPI

𝜈
from the initial state, and we use rules of liveness obligations such as cred-

new, obls-add, and prom-get to obtain liveness-related predicates such as Obls1 ( [(𝜅, 𝑋 ↦→1

𝑤)]).
Finally, we apply the simulation proofs Sim1 and Sim2 to finish the proof.

4 Modular Specification for Liveness
Lilo’s liveness reasoning based on progress credits enables modular specifications for library

functions with both safety and liveness guarantees. As we discuss in §4.1, a modular specification

for liveness must concern two classes of effects that influence progress of threads, each called

blocking and delay (also called impedance) [9, 29]. In §4.2, we show how Lilo enables reasoning

about blocking and delay through a novel proof technique called obligation links. Finally, we discuss

what is leaked by Lilo’s specifications and its consequences in §4.3.

4.1 Motivating Example: When Does a Spinlock Terminate?
Spinlock guarantees exclusive access to shared resources such as shared memory locations. It

achieves exclusiveness with a CAS operation as follows:

def lock(𝑥) = do { Y; 𝑏 := CAS(𝑥, 0, 1); } while (𝑏 = 0); def unlock(𝑥) = Y; 𝑥 := 0; (Spinlock)

When a thread acquires and owns the lock, the spinlock ensures exclusive access to the owner by

forcing other threads to wait in a loop until the lock is unlocked. This protocol is implemented
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using a CAS(𝑥, 𝑜𝑙𝑑, 𝑛𝑒𝑤), which compares the value at 𝑥 with 𝑜𝑙𝑑 and if they are the same, writes

𝑛𝑒𝑤 to 𝑥 and returns 1. If the value at 𝑥 is not the same as 𝑜𝑙𝑑 , CAS(𝑥, 𝑜𝑙𝑑, 𝑛𝑒𝑤) simply returns 0

and leaves 𝑥 as is. Consequently, a thread can successfully write 1 to 𝑥 and exit the do-while loop

of lock(𝑥) only when the value at 𝑥 is 0, which indicates that the lock is not acquired by any other

thread. To release a lock, a thread can invoke unlock(𝑥) that simply writes 0 to 𝑥 .

A lock(𝑥) invocation may not terminate due to its do-while loop. More concretely, there are

two scenarios in which an invocation may not terminate.

Scenario 1: missing unlock. If a thread acquires the lock 𝑥 but does not release it, another thread’s

invocation of lock(𝑥) does not terminate. In this case, 𝑥 is fixed to 1 and CAS(𝑥, 0, 1) always returns
0, and any waiting thread cannot exit the loop. We say that waiting threads are blocked by the lock.

Scenario 2: infinite lock. If a thread acquires the lock 𝑥 infinitely many times before another

thread acquires it, another thread’s lock(𝑥) may not terminate. This is because the CAS(𝑥, 0, 1)
operation does not guarantee liveness: when two threads are competing for a CAS(𝑥, 0, 1), it is
possible that only the first thread successfully swaps the value and gets the return value 1, starving

the other thread. Scheduler fairness does not help here because the second thread may get its turns

only when the first thread is holding the lock. We say that waiting threads are delayed.

Termination of a spinlock. Once the above two scenarios are prevented, we can prove the

termination of lock(𝑥) by the following high-level arguments. “Unblock”: Whenever a thread

acquires the lock, it will eventually unlock it, i.e., unblock waiting threads. “Finite delay”: Also,

since the lock is acquired only a finite number of times, waiting threads are delayed only finite

times and eventually becomes the only thread waiting for the lock. “Terminate”: Then, since the

lock is eventually unlocked by “Unblock”, the thread can acquire the lock.

4.2 Proving a Specification of a Spinlock
Basic specification. We present Lilo’s Hoare triple for Spinlock that guarantees termination:

isSL(𝜅𝑆 , 𝑥, 𝐿, 𝑁 ) ⊢ {Obls
th
( []) ∗ ^𝜅𝑆 (ℓ, 𝑛 + 1)} lock(𝑥) (HT-SL)

{∃𝜅𝑈 .Obls
th
( [(𝜅𝑈 , shot

𝛾 )]) ∗ ^𝜅𝑈 (ℓ, 𝑛) ∗ locked (𝜅𝑈 )}⊤
Here, locked (𝜅𝑈 ) is a token that represents the exclusive access granted to the owner of the lock

(we omit ghost locations for brevity). This is a basic specification because it assumes empty client

obligation Oblsth ( []). We later show how we can extend it to handle general client obligations.

In Lilo, the Hoare triple is simply a format for writing the simulation weakest precondition:
3

{𝑃} 𝑓 (𝑥) {𝑣 .𝑄 (𝑣)}E ≜ ∀𝑘𝑡 𝑘𝑠 . (𝑃 ∗ (∀𝑣 .𝑄 (𝑣) −∗ 𝑘𝑡 (𝑣) th

E Y; 𝑘𝑠 )) −∗ 𝑓 (𝑥); 𝑘𝑡 th

E Y; 𝑘𝑠

The definition says that for arbitrary target and source continuations 𝑘𝑡 and 𝑘𝑠 , the verifier ob-

tains 𝑓 (𝑥); 𝑘𝑡 th

E Y; 𝑘𝑠 if the verifier proves the precondition 𝑃 and the simulation (∀𝑣 .𝑄 (𝑣) −∗
𝑘𝑡 (𝑣) th

E Y; 𝑘𝑠 ) for the continuations given the postcondition𝑄 . This definition preserves termina-

tion as it builds on a termination-preserving simulation. Also, the Hoare triple requires a Y in the

source side because target Ys can only be executed when the source side also has a Y (yield-tgt).

The specificationHT-SLmentions two obligations,𝜅𝑈 and𝜅𝑆 , each appearing in the postcondition

and the precondition. The 𝜅𝑈 obligation captures the “Unblock” argument that ensures that every

lock is eventually unlocked. HT-SL enforces this by adding a new obligation 𝜅𝑈 to the obligation list

in the postcondition, Oblsth ( [(𝜅𝑈 , shot

𝛾 )]), where the promised predicate shot

𝛾
can be fulfilled

by calling the unlock function. Also, the thread that acquires the lock gets ^𝜅𝑈 (ℓ, 𝑛) that can be

3
Our approach follows Iris’s Hoare triple, which includes a persistence modality. For our examples, attaching a persistence

modality makes no difference, and we choose to omit it for brevity.
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link-pers

persistent(𝜅1—⋄𝜅2)

link-new

_𝜅1 ⌈ℓ, 𝑛⌉ ∗ ^𝜅2 (ℓ, 𝑛)
¤|⇛𝜅1—⋄𝜅2

link-amp

^𝜅1 (ℓ, 𝑛) ∗ 𝜅1—⋄𝜅2
¤|⇛^𝜅2 (ℓ, 𝑛)

link-trans

𝜅1—⋄𝜅2 ∗ 𝜅2—⋄𝜅3
𝜅1—⋄𝜅3

Fig. 4. Selected and simplified rules of obligation link.

spent to execute the yields before it unlocks the lock, where the parameters ℓ and 𝑛 are decided by

the client when initializing the lock. For example, if the thread needs to execute three yields, we

must instantiate at least ℓ = 1 and 𝑛 = 3, and we use pc-split to get three ^𝜅𝑈 (1, 1)s to execute the

yields. If we instead instantiate ℓ = 1 and 𝑛 = 2, we cannot execute the third yield.

The 𝜅𝑆 obligation captures the “Finite delay” argument that ensures that the lock is acquired

only finite times. Note that unlike 𝜅𝑈 , this obligation is not tied to a specific thread, because “Finite

delay” is a logical constraint that is imposed by the programming pattern. HT-SL enforces constraint

by requiring ^𝜅𝑆 (ℓ, 𝑛 + 1) in the precondition. Because there exists only finite number of progress

credits for 𝜅𝑆 , we can satisfy the precondition only finite number of times. This ensures that the

lock function is called only finite times, guaranteeing finite delay. Here, the amount (ℓ, 𝑛 + 1) is
related to the proof structure of the specification, which we explain shortly.

Obligation link. Formally, we can prove the specification, i.e., establish “Terminate”, with a nested

induction on the do-while loop, where the outer induction corresponds to “Finite delay” and the

inner induction corresponds to “Unblock”. More concretely, because the lock is acquired only a

finite number of times, we do the first induction on the number of lock acquisitions. If the lock is

already unlocked, we can just acquire it. If the lock is acquired by some other thread, we do the

second induction on the condition that the lock is eventually unlocked.

In Lilo, such a nested induction proof structure is captured by an obligation link (Fig. 4). An

obligation link 𝜅1—⋄𝜅2 is obtained using link-new, which says that if themaximum possible number

of progress credits for 𝜅1 is (ℓ, 𝑛), as denoted by _𝜅1 ⌈ℓ, 𝑛⌉, and if we provide equal amount of

progress credits for 𝜅2, ^𝜅2 (ℓ, 𝑛), we obtain persistent knowledge 𝜅1—⋄𝜅2. This knowledge says
that whenever we have ^𝜅1 (ℓ0, 𝑛0), we can convert it into ^𝜅2 (ℓ0, 𝑛0) using link-amp. This is sound

because we already submitted enough amount of credits for 𝜅2 through link-new. Obligation links

are transitive, link-trans, as expected from its meaning.

The rule link-amp captures the nested induction reasoning: 𝜅1 corresponds to the inner induction

and 𝜅2 to the outer induction. For the spinlock example, the nested induction is captured by 𝜅𝑈—⋄𝜅𝑆 .
Whenever a thread with the lock makes progress to unlocking the lock (𝜅𝑈 ), this also means that

the overall program is making progress towards reaching the last turn of the finite locking (𝜅𝑆 ). To

carry out this reasoning, we must allocate large enough progress credits for 𝜅𝑆 that can be used for

every new lock acquisition. As we see in the specification HT-SL, a new obligation 𝜅𝑈 is created

whenever a lock is acquired, and therefore a new 𝜅𝑈—⋄𝜅𝑆 for this 𝜅𝑈 must also be created. We will

soon see that we allocate _𝜅𝑈 ⌈ℓ, 𝑛 + 1⌉ for the new 𝜅𝑈 , so to create 𝜅𝑈—⋄𝜅𝑆 with link-new, we

need ^𝜅𝑆 (ℓ, 𝑛 + 1), which is why the specification requires it in the precondition.

Moreover, obligation links enable induction on an obligation that no thread is obligated to fulfill.

The basic principle of induction in Lilo involves selecting an obligation 𝜅 and combining the rules

cred-ind and prom-progress. In particular, we need a promise for𝜅 to use the prom-progress rule, and

a promise for 𝜅 indicates that some thread is obligated to fulfill that promise. However, the explicit

requirement of a promise is too restrictive in many cases: for example, the spinlock example’s

finite locking obligation 𝜅𝑆 is not assigned to any thread, and we cannot obtain a promise for 𝜅𝑆 .

This prevents us from directly using prom-progress with 𝜅𝑆 when we try to do induction with 𝜅𝑆 ,

but because we have an obligation link 𝜅𝑈—⋄𝜅𝑆 , we can instead use prom-progress with 𝜅𝑈 and

link-amp with 𝜅𝑈—⋄𝜅𝑆 . This combination of rules can give us a progress credit for 𝜅𝑆 , which we

can use with cred-ind to do an induction proof.
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Invariant. We use the following invariant for HT-SL (we omit details related to ghost locations):

isSL(𝜅𝑆 , 𝑥, 𝐿, 𝑁 ) ≜ SLI (𝜅𝑆 , 𝑥)
𝜈 ∗ _𝜅𝑆 ⌈𝐿, 𝑁 ⌉ locked (𝜅𝑈 ) ≜ ◦(𝜅𝑈 ) (SLI)

SLI (𝜅𝑆 , 𝑥) ≜ ∃𝜅𝑈 . •(𝜅𝑈 ) ∗ (𝑥 ↦→0 ∗ locked (𝜅𝑈 )) ∨ (𝑥 ↦→1 ∗ pend

𝛾 ∗ 𝜅𝑈
——⋄ shot

𝛾 ∗ 𝜅𝑈—⋄𝜅𝑆 )

The invariant SLI (𝜅𝑆 , 𝑥) describes a two-state transition system, where the state with 𝑥 ↦→ 0

represents that the lock is unlocked and the other state with 𝑥 ↦→1 represents that the lock is locked

by some owner thread. In the invariant, 𝜅𝑈 ensures finite blocking where the promise
𝜅𝑈
——⋄ shot

𝛾

is fulfilled by unlocking the lock. Also, 𝜅𝑆 ensures finite delay, where _𝜅𝑆 ⌈𝐿, 𝑁 ⌉ indicates the
maximum number of delays possible. Moreover, we use the usual authoritative assertions [21]

•(𝜅𝑈 ) and ◦(𝜅𝑈 ) to resolve the existential variable 𝜅𝑈 .

The persistent predicate isSL(𝜅𝑆 , 𝑥, 𝐿, 𝑁 ) packs the invariant with_𝜅𝑆 ⌈𝐿, 𝑁 ⌉.We use_𝜅𝑆 ⌈𝐿, 𝑁 ⌉
to carry out an induction proof with the cred-ind induction rule. However, as we discussed,

termination of spinlock involves a nested proof structure, which is captured by the obligation

link 𝜅𝑈—⋄𝜅𝑆 . Therefore, even if 𝜅𝑈 makes progress instead of 𝜅𝑆 , i.e., we obtain ^𝜅𝑈 (0, 1), we
can convert it into progress of 𝜅𝑆 and carry out induction. This significantly reduces proof effort,

because identifying nested structures and constructing adequate induction hypotheses presents

the main challenge in liveness proofs, especially in FOS (Lee et al. [27, §9]).

Proof. Proving that the lock function of Spinlock satisfies HT-SL boils down to proving the termi-

nation of the while loop, i.e., the “Terminate” argument. We first set up an induction hypothesis

using cred-ind with _𝜅𝑆 ⌈𝐿, 𝑁 ⌉. Thanks to the obligation link, this single induction is enough to

carry out the nested argument. Then, we open the invariant SLI and get the two cases.

If we are in the 𝑥 ↦→1 case, we iterate once where yield-tgt gives us a scheduler credit €. Then,

prom-progress with € and
𝜅𝑈
——⋄ shot

𝛾
gives us ^𝜅𝑈 (0, 1) ∨ shot

𝛾
, where the case with shot

𝛾
is

eliminated by contradiction with pend

𝛾
. Therefore, we get ^𝜅𝑈 (0, 1) and use this with 𝜅𝑈—⋄𝜅𝑆

to obtain ^𝜅𝑆 (0, 1). We use this with the inductive hypothesis to finish the proof by induction.

If we are in the other case with 𝑥 ↦→ 0, we execute the CAS(𝑥, 0, 1) and get 𝑏 = 1 with 𝑥 ↦→ 1,

which means the loop terminates. To close the invariant, we must allocate a new oneshot predicate

pend

𝛾
. In addition, we also allocate a new “unblock” obligation 𝜅𝑈 with cred-new and obtain

_𝜅𝑈 ⌈ℓ, 𝑛 + 1⌉ and^𝜅𝑈 (ℓ, 𝑛 + 1). We use pc-split and pc-drop to get^𝜅𝑈 (ℓ, 𝑛) and^𝜅𝑈 (1, 1), where
the former is returned as the postcondition. The latter, ^𝜅𝑈 (1, 1), is consumed by obls-add to

add 𝜅𝑈 with a promise to fulfill shot

𝛾
in the obligation list. Then, we use prom-get to obtain a

promise
𝜅𝑈
——⋄ shot

𝛾
. Moreover, we use link-new with _𝜅𝑈 ⌈ℓ, 𝑛 + 1⌉, which we just allocated, and

^𝜅𝑆 (ℓ, 𝑛 + 1), which is given as precondition, to get 𝜅𝑈—⋄𝜅𝑆 . Finally, we update •(𝜅𝑈 ) and ◦(𝜅𝑈 ),
close the invariant, and satisfy the postcondition to finish the proof.

The unlock obligation 𝜅𝑈 can be fulfilled by calling unlock(𝑥), which has the following spec:

isSL(𝜅𝑆 , 𝑥, 𝐿, 𝑁 ) ⊢ {Obls
th
( [(𝜅𝑈 , shot

𝛾 )]) ∗ ^𝜅𝑈 (1, 1) ∗ locked (𝜅𝑈 )} unlock(𝑥) {Obls
th
(∅)}⊤

The precondition requires an obligation list with the unlock obligation 𝜅𝑈 and the locked (𝜅𝑈 )
token, and also a credit ^𝜅𝑈 (1, 1) which we need to execute a Y in the unlock(𝑥). Then the spec

fulfills the unlock obligation and returns an empty obligation list Oblsth ( []).

Client obligations. We can generalize HT-SL to deal with client obligations, where the thread has

non-empty obligations Oblsth (Φ). In this case, the precondition requires ^𝜅 (𝐿 + 1, 𝑁 + 1) for each
obligation in Φ, so that we can spend∗𝜅∈dom(Φ) ^𝜅 (1, 1) to execute Ys while we are waiting for

the lock in the loop. The number (𝐿 + 1, 𝑁 + 1) roughly captures the maximum number of yields a

thread might execute to acquire the spinlock. As we do induction with _𝜅𝑆 ⌈𝐿, 𝑁 ⌉, the maximum

number of iteration roughly corresponds to (𝐿, 𝑁 ). There are fixed number of yields to execute for
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each iteration, and around (𝐿 + 1, 𝑁 + 1) is large enough compared to the total number of yields.

Note that we did not optimize the conditions for a tighter bound.

4.3 Limitation of Lilo Specifications
The previous discussion reveals that a spinlock specification with client obligations leaks the

number of yields of the function implementation, in the form of requiring progress credits for client

obligations. In particular, the layer leaks in Lilo proofs, and the user must concern about layers

when allocating obligations or initializing specifications. This is usually straightforward because

the user can pick large enough layers for obligations, and layers in specifications are parametrized.

Nonetheless, the leakage of layer information poses two issues regarding Lilo’s modularity.

First issue is that the number of yields can change if the implementation is updated, and we might

need to update the specification accordingly. Thankfully, Lilo’s abstractions provide reasonable

robustness against such updates. In particular, we can set up a large enough layer to tolerate updates

that add static number of yields. For spinlock, a specification that requires ^𝜅 (𝐿 + 2, 𝑁 + 1) for
client obligations can tolerate updates that add a fixed number of yields inside the while loop.

Second issue is that Lilo’s Hoare triples cannot capture functions involving unbounded dynamic

nesting of blocking functions. We probe this issue using a ticket lock, which is a starvation free

lock, and unlike a spinlock, it does not require “Finite delay” for termination. This significantly

simplifies our discussion, so we use ticket locks instead of spinlocks here.

Nesting ticket locks. We present a specification of a ticket lock (see §7.1 for the code):

isTL(𝑥, ℓ) ⊢ {Obls
th
(Φ) ∗ ∗

𝜅∈dom(Φ)
^𝜅 (ℓ + 4, 1)} locktk (𝑥) (HT-TL)

{∃𝜅𝑈 .Obls
th
((𝜅𝑈 , shot

𝛾 ) :: Φ) ∗ ^𝜅𝑈 (ℓ, 1) ∗ locked (𝜅𝑈 )}⊤
This is similar to the generalized specification of a spinlock, but without dealing with the finite

delay. We assume a ticket lock invariant isTL(𝑥, ℓ), and the precondition requires (ℓ +4, 1) progress
credits for obligations in Φ. Then, the postcondition adds a new obligation 𝜅𝑈 to unlock the lock

to Φ and gives ^𝜅𝑈 (ℓ, 1) and a locked (𝜅𝑈 ) token. We note that (ℓ + 4, 1) is a loose bound that is

more than enough to cover the number of yields a thread needs to execute to acquire the ticket

lock. Moreover, unlike a spinlock’s specification HT-SL, HT-TL does not require progress credits in

its precondition to ensure finite delay, because ticket lock is starvation free.

Then, consider the following function called incrBoth by D’Osualdo et al. [9, §5.4]:

def incrBoth(𝑙𝑎, 𝑙𝑏 , 𝑥, 𝑦) =Y; locktk (𝑥); Y; locktk (𝑦); Y; 𝑎 := 𝑙𝑎 ; Y; 𝑙𝑎 := 𝑎 + 1; (INCR-B)

Y; 𝑏 := 𝑙𝑏 ; Y; 𝑙𝑏 := 𝑏 + 1; Y; unlocktk (𝑦); Y; unlocktk (𝑥);

This uses a nested ticket lock to increment values of two shared memory locations 𝑙𝑎 and 𝑙𝑏 . Then,

consider developing a specification of INCR-B using that of ticket locks, HT-TL. According to HT-TL,

the outer lock introduces an unlock obligation 𝜅𝑈𝑥 , which can only be fulfilled after acquiring and

releasing the inner lock. For INCR-B, the inner lock needs ^𝜅𝑈 𝑦
(2, 1) to fulfill its unlock obligation

𝜅𝑈 𝑦 , so we have isTL(𝑦, 2). Therefore, for 𝜅𝑈𝑥 , we need ^𝜅𝑈𝑥
(2 + 4, 1) to execute yields inside

locktk (𝑦), and ^𝜅𝑈𝑥
(2, 1) to execute innermost and auxiliary yields.

Altogether, we have the following specification for INCR-B:

isTL(𝑥, 7) ∗ isTL(𝑦, 2) ⊢ {Obls
th
(Φ) ∗ ∗

𝜅∈dom(Φ)
^𝜅 (12, 1) ∗ 𝑙𝑎 ↦→𝑎 ∗ 𝑙𝑏 ↦→𝑏} incrBoth(𝑙𝑎, 𝑙𝑏 , 𝑥, 𝑦)

{Obls
th
(Φ) ∗ 𝑙𝑎 ↦→𝑎 + 1 ∗ 𝑙𝑏 ↦→𝑏 + 1}⊤

The precondition leaks the total number of yields inside the INCR-B function by requiring∗𝜅∈dom(Φ)
^𝜅 (12, 1). Also, isTL(𝑦, 2) shows that the function executes (2, 1) yields after acquiring the

inner lock, and isTL(𝑥, 7) shows that the function executes (7, 1) yields after acquiring the
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outer lock. Note that if we do not want to expose these implementation details, we can hide

isTL(𝑥, 7) ∗ isTL(𝑦, 2) by defining isIncrBoth(𝑥, 𝑦). However, we cannot hide∗𝜅∈dom(Φ) ^𝜅 (12, 1)
because client obligations must be aware of the number of yields they must execute.

As our discussion reveals, the layer of required progress credits for client obligations blows up

when we nest blocking functions. This is inevitable because nesting blocking functions introduces

a structure similar to nested loops, where the number of yields is multiplied for each nest. This

blow up can be addressed as long as only a fixed number of blocking functions are nested: INCR-B

example shows that we can compute a large enough layer that can cover the total number of yields.

However, this abstraction fails when functions involve unbounded dynamic nesting of blocking

functions, because we cannot determine the upper bound of the number of yields we must execute.

For example, a lock-coupling set [9, §5.5] nests 𝑁 locks, where 𝑁 corresponds to the length of the

linked list used to implement the set. Because 𝑁 is an implementation detail, we want to hide it

from the specification. Then, the precondition of a lock-coupling set requires (𝑀, 1) progress credits
for client obligations, where𝑀 is an arbitrary natural number depending on the dynamic internal

information of the implementation. Lock-coupling set is an especially complicated example, and

TaDA Live also required nontrivial extensions to prove a specification for it. We believe generalizing

the layer of progress credits to ordinal numbers can solve this limitation, which we leave as a future

work together with the verification of lock-coupling set.

5 Stratified Propositions for Higher-Order Reasoning
Lilo relies on higher-order reasoning techniques such as higher-order ghost states [20] for various

constructions, such as invariants and obligation lists. To support higher-order reasoning, we develop

stratified propositions, inspired by Nola [31].

Issue with step-indexing. Although step-indexing is used heavily in higher-order separation logic

for safety [20], it is known to be ill-suited for liveness reasoning [13, 39, 44] because step-indexing

“restricts reasoning to finite prefixes of program execution,” as discussed by Timany et al. [44, §1,

§2.2]. Existing step-indexing based approaches sidestep this limitation in various ways. Trillium [44]

utilizes the fact that liveness properties can be approximated by safety properties by imposing

restrictions. For example, termination is a liveness property, but termination with a fixed upper

bound on the number of steps is a safety property. Simuliris [13] supports liveness but does not

use step-indexing, and consequently, only supports static invariants. Spies et al. develop transfinite

step-indexing that supports liveness, but it is not yet applied to concurrency. The goal of Lilo is

proving true liveness properties, such as fair refinement of non-terminating programs, and we

do not use step-indexing to avoid the said issue. Developing a step-indexing based concurrent

separation logic for liveness is not in the scope of our work.

5.1 Definition of Stratified Propositions
Stratified propositions sProp𝑖 are stratified syntaxes for the language of logical assertions in Lilo,

where the natural number 𝑖 is the stratification index (Fig. 5). The term “stratified” comes from

the fact that we have a set of syntaxes, i.e., sProp
0
, sProp

1
, sProp

2
, etc., to express logical assertions

in Lilo. The definition of stratified propositions sProp𝑖 consists of types 𝜏 of terms in sProp𝑖 , the

interpretation I(𝜏, 𝑖) of sProp𝑖 types to the meta-level type Type (i.e., “Type” type of Coq), the
stratified syntaxes of logical assertions sProp𝑖 , typically written as 𝑃𝑖 or 𝑄𝑖 , and the interpretation

J·K𝑖 of sProp𝑖 to iProp, the semantic domain of stratified propositions.

Types in sProp𝑖 and their interpretation. The types 𝜏 in sProp𝑖 are part of the syntax of Lilo

assertions for representing the actual semantic interpretation of those types. For example, the type

of the natural numbers N in sProp𝑖 is a syntax and its interpretation I(N, 𝑖) (ignore 𝑖 for now)
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𝜏 ≜ 𝜙 | N | B | Z | ... | 𝜏 → 𝜏 | 𝜏 × 𝜏 | 𝜏 + 𝜏 | ...
I(𝜏, 𝑖) ≜ match 𝜏 with | 𝜙 ⇒⇒ sProp𝑖 | N ⇒⇒ N | ...

| 𝜏 → 𝜏 ⇒⇒ I(𝜏, 𝑃𝑖 ) → I(𝜏, 𝑃𝑖 ) | ...
𝑃𝑖 , 𝑄𝑖 ≜ True | False | 𝑃𝑖 ∧𝑄𝑖 | 𝑃𝑖 ∨𝑄𝑖 | 𝑃𝑖 ⇒ 𝑄𝑖

| 𝑃𝑖 ∗𝑄𝑖 | 𝑃𝑖 −∗ 𝑄𝑖 | □𝑃𝑖 | ¤|⇛𝑃𝑖 | 𝛼
𝛾

| ∀𝜏 (𝑥 : I(𝜏, 𝑖 − 1)) . 𝑃𝑖 | ∃𝜏 (𝑥 : I(𝜏, 𝑖 − 1)) . 𝑃𝑖
| ↑ 𝑃𝑖−1 | 𝑃𝑖

𝜈 | Obls
th
(Φ) | 𝜅

——⋄𝑃𝑖 | ...

Φ : 𝜅
fin−−⇀ 𝑃𝑖 I(𝜏, 𝑖) : Type

J·K𝑖 : sProp𝑖 → iProp sProp
0
= ∅

J𝑃𝑖K𝑖 ≜ match 𝑃𝑖 with | ... | 𝛼 𝛾 ⇒⇒ 𝛼
𝛾

| ∀𝜏 (𝑥 : I(𝜏, 𝑖 − 1)) . 𝑃𝑖 ⇒⇒ ∀𝑥 . J𝑃𝑖 𝑥K𝑖
| ∃𝜏 (𝑥 : I(𝜏, 𝑖 − 1)). 𝑃𝑖 ⇒⇒ ∃𝑥 . J𝑃𝑖 𝑥K𝑖
| ↑ 𝑃𝑖−1 ⇒⇒ J𝑃𝑖−1K𝑖−1 | 𝑃𝑖

𝜈 ⇒⇒ 𝑃𝑖
𝜈

| Obls
th
(Φ) ⇒⇒ Obls

th
(Φ) | ...

Fig. 5. Simplified definition of types, type interpretation, syntax, and interpretation of sProp𝑖 .

is the actual Coq type N of the natural numbers. The types in sProp𝑖 can include syntax for any

semantic type unless the semantic type depends on an arbitrary sProp𝑖 type; for instance, types 𝜏

cannot include a syntax sProp
3
whose interpretation is defined as I(sProp

3
, 𝑖) = sProp

3
.

This restriction is essential for allowing quantifications over a type 𝜏 in sProp𝑖 , which depends

on the interpretation of types. For instance, universal quantification in sProp𝑖 has the following

form: ∀𝜏 (𝑥 : I(𝜏, 𝑖 − 1)) . 𝑃𝑖 . The ∀ quantifies over the interpretation of the type 𝜏 and the assertion

𝑃𝑖 depends on the this interpretation as represented by (𝑥 : I(𝜏, 𝑖 − 1)). This is an application of

the HOAS approach [35] which expedites the mechanization of sProp𝑖 , as we discuss later.

To allow higher-order quantifications in sProp𝑖 , i.e., quantification over sProp𝑖 , we define a special

type 𝜙 which represents the stratified propositions themselves, and stratify the type interpretation

I(·, 𝑖) with the stratification index 𝑖 . Then the interpretation of 𝜙 is decided by the stratification

index of the interpretation: I(𝜙, 𝑖) = sProp𝑖 . As a result, a sProp𝑖 assertion can assert quantifications

over sProp𝑖−1 with a lower index, enabling higher-order quantifications.

Syntax and interpretation of sProp𝑖 . sProp𝑖 is a data type that represents the syntax of assertions
in Lilo where the semantic domain is iProp, which (roughly) has the following definition: iProp =

Σ → Prop. In the definition, Σ is a (non-step-indexed) PCM and Prop is the type of meta-level (i.e.,

Coq) propositions. The base of the stratification sProp
0
is an empty set ∅. For 𝑖 > 0, sProp𝑖 includes

syntax for the usual connectives of separation logic such as the separating conjunction 𝑃𝑖 ∗𝑄𝑖 . It
also has syntax for various modalities, such as persistence modality □𝑃𝑖 and the update modality

¤|⇛𝑃𝑖 [21]. Interpretation of these usual assertions is trivial, for instance, J𝑃𝑖 ∗𝑄𝑖K𝑖 = J𝑃𝑖K𝑖 ∗ J𝑄𝑖K𝑖 .
sProp𝑖 also supports first-order custom ghost states, for which the user can use the assertion 𝛼

𝛾

which asserts ownership of an element 𝛼 of the carrier set of a small PCM (sPCM) allocated at

the ghost location 𝛾 . Small PCMs are PCMs that do not depend on sProp𝑖 , thus cannot describe

higher-order custom ghost states. On the other hand, because of this restriction, sProp𝑖 can depend

on sPCMs, which is crucial for allowing custom ghost states. sPCMs have a natural embedding into

PCMs which makes the interpretation of 𝛼
𝛾
trivial.

Stratification of sProp𝑖 occurs with the higher-order quantifiers, which means we can write an

assertion of type sProp𝑖 with (universal or existential) quantification over sProp𝑖−1. More concretely,

the quantifiers of sProp𝑖 quantify over a type of sProp𝑖 which include 𝜙 , the type of assertions.

Because the type interpretation of 𝜙 at index 𝑖 , I(𝜙, 𝑖), is defined as sProp𝑖 , the assertion ∀𝜙 (𝑥 :

I(𝜙, 𝑖 − 1)) . 𝑃𝑖 is interpreted as ∀(𝑥 : sProp𝑖−1). J𝑃𝑖 𝑥K𝑖 , which captures higher-order universal

quantification (similar for the existential quantifier). This makes the logic described by sProp𝑖 a

higher-order logic, and important features of Lilo such as the invariants and the obligation lists

depend on the power of higher-order quantification.
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An assertion 𝑃𝑖 of sProp𝑖 can be lifted to an assertion of sProp𝑗 where 𝑗 > 𝑖 using the lift assertion,

which enables us to write assertions that include assertions of different stratification indices. A

lifted assertion ↑ 𝑃𝑖−1 is interpreted with the original stratification index J𝑃𝑖−1K𝑖−1.
The remaining components of sProp𝑖 are called atoms, which are syntax for user-defined separa-

tion logic predicates that depend on higher-order ghost states. For example, atoms of Lilo include

the invariant predicate 𝑃𝑖
𝜈
, the obligation list predicate Oblsth (Φ), and the promise predicate

𝜅
——⋄𝑃𝑖 . The most important feature of atoms is that the interpretation of atoms do not interpret

the sProp𝑖s in their parameters. For example, the interpretation of the invariant predicate 𝑃𝑖
𝜈
is

𝑃𝑖
𝜈
(of type iProp), where the predicate keeps 𝑃𝑖 not interpreted. This is because we implement

higher-order ghost states by letting the predicates depend on the syntactic data type sProp𝑖 , not the

actual semantics iProp. Consequently, PCMs used for the definition of higher-order ghost states do

not depend on iProp, avoiding an unsound cyclic definition.

Mechanizing and working with sProp𝑖 . The definition of sProp𝑖 with its full power to allow

higher-order quantifiers is not easy to mechanize in Coq, because a naive definition easily results

in universe inconsistency. To implement a mechanized definition of sProp𝑖 , we apply the PHOAS

approach [4] to develop stratified syntax that allows higher-order quantifiers.

Using sProp𝑖 means every predicate in Lilo is indexed by its stratification index, and this introduces

some complexity in proofs, especially when writing invariants. However, the index does not need

to increase unless there is a higher-order quantification, which is not commonly required, and most

examples discussed in §7 use only two indices while the most complex example (the elimination

stack) uses four indices. Moreover, actual proofs in Lilo are carried out in the semantic domain by

interpreting sProp𝑖 to iProp whenever necessary, which allows us to utilize the Iris Proof Mode [25],

a powerful tool that streamlines concurrent separation logic proofs.

5.2 Invariants with Stratified Propositions
In this section, we give an overview of the invariants in Lilo. Instead of describing the model in

its full detail, we focus on demonstrating how we apply stratified propositions to obtain higher-

order ghost states. Our model of invariants closely follows that of Iris with slight modifications to

incorporate stratified propositions, and Jung et al. [21, §7] discusses the original model in detail.

World satisfactions. Invariants in Lilo are governed by a protocol called world satisfactions which

is a collection of predicates W𝑖s. Concretely, the protocol is defined by a (syntactic) predicate Ws𝑛

of type sProp𝑛 defined as Ws𝑛 ≜ ∗𝑖<𝑛 (↑𝑛−𝑖−1 W𝑖 ). Here, we define Ws0 ≜ True and ↑𝑛 𝑃𝑖 lifts 𝑃𝑖
from sProp𝑖 to sProp𝑖+𝑛 . Namely, Ws𝑛 collects W𝑖s where 0 ≤ 𝑖 < 𝑛.

A predicateW𝑖 is called a stratified world satisfaction:

W𝑖 : sProp𝑖+1 ≜ ∃N fin−−⇀𝜙 (𝐼 : I(N fin−−⇀ 𝜙, 𝑖)) . ↑ (WHas𝑖 (𝐼 ) ∗ ∗
𝜈∈dom(𝐼 )

((𝐼 (𝜈) ∗ {𝜈} 𝛾𝐷 ) ∨ {𝜈} 𝛾𝐸 ))

J 𝑃𝑖
𝜈K𝑖 ≜ ◦[𝜈 ↦→ ag(𝑃𝑖 )]

𝛾𝐼 JWHas𝑖 (𝐼 )K𝑖 ≜ •ag(𝐼 ) 𝛾𝐼 (ag is mapped pointwise over 𝐼 .)

Here,W𝑖 with index 𝑖 has type sProp𝑖+1 because it includes ∃ over 𝐼 of type I(N fin−⇀ 𝜙, 𝑖), which is

a finite map from the natural numbers to sProp𝑖 that tracks all existing invariants. The remaining

part of the definition has the type sProp𝑖 , and we use a lift ↑ to embed sProp𝑖 into sProp𝑖+1.
A stratified world satisfaction require two kinds of atoms, each representing higher-order ghost

statesWHas𝑖 (𝐼 ) and 𝑃𝑖
𝜈
. The interpretation of these atoms utilize authoritative assertions and

agreement algebra [21]. Intuitively,WHas𝑖 (𝐼 ) keeps track of a finite map 𝐼 from N to sProp𝑖 , and

𝑃𝑖
𝜈
is a persistent predicate that holds a singleton map [𝜈 ↦→ ag(𝑃𝑖 )]. Then, by the underlying

algebra, we can derive 𝐼 (𝜈) = 𝑃𝑖 fromWHas𝑖 (𝐼 ) and 𝑃𝑖
𝜈
, which lets us retrieve 𝑃𝑖 fromW𝑖 .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 125. Publication date: April 2025.



Lilo: A Higher-Order, Relational Concurrent Separation Logic for Liveness 125:21

fupd-def

⇛𝑛,E1 E2 𝑃𝑛 ≜ Ws𝑛 ∗ E1

𝛾𝐸 −∗ ¤|⇛(Ws𝑛 ∗ E2

𝛾𝐸 ∗ 𝑃𝑛 )

inv-close

J𝑃𝑖K𝑖 ∗ (J𝑃𝑖K𝑖 ≡−∗𝑛,E\{𝜈} E True) ∗ 𝑡𝑔𝑡 th

𝑛, E 𝑠𝑟𝑐

𝑡𝑔𝑡 th

𝑛, E\{𝜈} 𝑠𝑟𝑐

inv-alloc

𝑖 < 𝑛 𝜈 ∈ N
J𝑃𝑖K𝑖 ≡−∗𝑛 𝑃𝑖

𝜈

inv-open

𝑃𝑖
𝜈 ∗ ( (J𝑃𝑖K𝑖 ∗ (J𝑃𝑖K𝑖 ≡−∗𝑛,E\{𝜈} E True) ) −∗ 𝑡𝑔𝑡 th

𝑛, E\{𝜈} 𝑠𝑟𝑐 ) 𝑖 < 𝑛

𝑡𝑔𝑡 th

𝑛, E 𝑠𝑟𝑐

Fig. 6. Selected invariant rules of Lilo.

The rest of the definition is necessary to implement an interface that enables opening and closing

of invariants, and it closely follows the construction by Jung et al. [21, §7]. We omit the details

since they are irrelevant to higher-order ghost states.

Invariant rules. We present selected invariant rules of Lilo in Fig. 6. We define the fancy update

modality with Ws𝑛 , and we follow the notations of Iris with a slight modification to denote the

stratification index 𝑛. Also, the simulation weakest precondition 𝑡𝑔𝑡 th

𝑛, E 𝑠𝑟𝑐 is roughly defined as

Ws𝑛 ∗ E 𝛾𝐸 −∗ ¤|⇛𝑡𝑔𝑡 th 𝑠𝑟𝑐 where 𝑡𝑔𝑡 th 𝑠𝑟𝑐 is the underlying thread-local simulation relation.

Then, most of the invariant rules can be obtained by unfolding the definitions.

Note that the fancy update modality and the simulation weakest precondition are both stratified,

where the index is decided by Ws𝑛 inside each definition. This results in the 𝑖 < 𝑛 requirement

in some of the rules, such as inv-alloc, where 𝑖 is the index of the proposition registered to the

invariant and 𝑛 is the index ofWs𝑛 . This is becauseWs𝑛 only includesW𝑖s with 𝑖 < 𝑛, and we need

W𝑗 to retrieve a proposition with index 𝑗 .

6 Generalized Rules of Lilo: Delayed Promises
The complete rules of Lilo involve delayed promises which we omitted in the previous sections.

They enable a more natural description of causal dependencies between promises, which means the

fulfillment of a promise depends on the fulfillment of some other promises.

For example, consider the following code executed by a thread 𝑇2:

do { Y; 𝑎 := 𝑋 ; } while (𝑎 ≠ 1); Y; 𝑌 := 2; Y; ret 0

Thread 𝑇2 waits for the value of a shared location 𝑋 to be updated to 1 in a while loop and writes

2 to 𝑌 after it exits the loop. Assuming that there exists another thread 𝑇1 that first writes 1 to 𝑋

and waits for the value at 𝑌 to be updated to 2, the termination argument of this program in Lilo

uses two promises
𝜅1
——⋄ 𝑋 ↦→1

𝑥
and

𝜅2
——⋄ 𝑌 ↦→2

𝑦
where the first one is fulfilled by 𝑇1 and the

second one by 𝑇2. However, the promise
𝜅2
——⋄ 𝑌 ↦→2

𝑦
of 𝑇2 can be fulfilled only after the promise

𝜅1
——⋄ 𝑋 ↦→1

𝑥
of 𝑇1 is fulfilled, exhibiting a causal dependency between the two promises.

In this case, thread 𝑇2 can make a delayed promise
𝜅2
—— ⊲⊳ 𝑌 ↦→2

𝑦
instead of a real promise, and

then thread 𝑇1 can activate the delayed promise after it fulfills
𝜅1
——⋄ 𝑋 ↦→1

𝑥
. While the promise 𝜅2

is delayed, 𝑇2 does not submit progress credits for 𝜅2 as required by yield-tgt while waiting in the

loop, and when the promise is activated, 𝑇2 knows that the value at 𝑋 is 1 and can exit the loop.

Our case studies show that delayed promises enable more natural liveness reasoning (§7). We

discuss some core concepts here, and guide interested readers to our Coq development [28].

Rules of delayed promise. To support delayed promises, we extend the rules of Lilo by introducing

⊲⊳𝜅 called the activation token (Fig. 7). We obtain two activation tokens when we allocate a new

liveness obligation 𝜅 using cred-new2, and we need to spend one of them when we add 𝜅 to an

obligation list using obls-add2. Then, we can obtain a delayed promise
𝜅
—— ⊲⊳ 𝑃𝑖 using dp-get.

When we have a delayed promise
𝜅
—— ⊲⊳ 𝑃𝑖 and an activation token ⊲⊳𝜅 (the remaining one from

cred-new2), we can consume ⊲⊳𝜅 and activate the delayed promise to obtain a promise
𝜅
——⋄𝑃𝑖 using
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act-pers

persistent(⊲⊳𝜅 )

activate

⊲⊳𝜅 ∗ ⊲⊳𝜅

¤|⇛⊲⊳𝜅

not-act

⊲⊳𝜅 ∗ ⊲⊳𝜅

False

cred-new2

ℓ, 𝑛 ∈ N

¤|⇛∃𝜅, _𝜅 ⌈ℓ, 𝑛⌉ ∗ ^𝜅 (ℓ, 𝑛) ∗ ⊲⊳𝜅 ∗ ⊲⊳𝜅

obls-add2

Obls
th
(Φ) ∗ persistent(J𝑃𝑖K𝑖 ) ∗ ^𝜅 (1, 1) ∗ ⊲⊳𝜅

¤|⇛Obls
th
((𝜅, 𝑃𝑖 ) :: Φ)

obls-fulfill2

Obls
th
(Φ) ∗ J𝑃𝑖K𝑖 ∗ ⊲⊳𝜅 (𝜅, 𝑃𝑖 ) ∈ Φ

¤|⇛Obls
th
(Φ \ (𝜅, 𝑃𝑖 ))

dp-pers

persistent( 𝜅—— ⊲⊳ 𝑃𝑖 )

dp-get

Obls
th
(Φ) Φ(𝜅) = 𝑃𝑖
𝜅
—— ⊲⊳ 𝑃𝑖

dp-act

𝜅
—— ⊲⊳ 𝑃𝑖 ∗ ⊲⊳𝜅

¤|⇛ 𝜅
——⋄𝑃𝑖

prom-def

𝜅
——⋄𝑃𝑖 ≜ ⊲⊳𝜅 ∗ 𝜅

—— ⊲⊳ 𝑃𝑖

yield-tgt2

(Obls
th
(Φ1 ◦ Φ2) ∗ ∗

𝜅∈dom(Φ1 )
⊲⊳𝜅 ∗ €) ≡−∗𝑛, E ⊤ 𝑘𝑡 th

𝑛,⊤ Y; 𝑘𝑠

(Obls
th
(Φ1 ◦ Φ2) ∗ ∗

𝜅∈dom(Φ1 )

⊲⊳𝜅 ∗ ∗
𝜅∈dom(Φ2 )

^𝜅 (1, 1)) −∗ Y; 𝑘𝑡 th

𝑛, E Y; 𝑘𝑠

Fig. 7. Selected rules of obligation list and delayed promise.

dp-act. By activating a delayed promise, we can use the promise progress rule prom-progress, which

does not hold for a delayed promise. Also, once we activate a promise, we can obtain a persistent

token ⊲⊳𝜅 called an activated token from prom-def, which contradicts with ⊲⊳𝜅 (not-act). A thread

can fulfill 𝜅 only when it is activated, as ⊲⊳𝜅 is required by obls-fulfill2.

Generalized rule for the yield. When a promise is delayed, i.e., when we have an activation token

⊲⊳𝜅 , we can submit it instead of progress credits ^𝜅 (1, 1) when executing a Y. Then the activation

token is returned after the thread returns from the yield. This principle is captured by yield-tgt2,

which decomposes the obligation list into delayed ones Φ1 and activated ones Φ2 and requires ⊲⊳𝜅
for Φ1 and ^𝜅 (1, 1) for Φ2. Then the rule returns ⊲⊳𝜅 for Φ1 and a scheduler credit €.

The yield-tgt2 rule is also relaxed compared to yield-tgt since it requires a view shift from E to

⊤ instead of directly requiring the ⊤mask. This allows activation tokens to be shared via invariants,

which is necessary for other threads to activate corresponding delayed promises.

7 Case Studies
We present several verification results carried out with Lilo. Results presented in this section are

simplified for the sake of space, such as the specifications or discussion about the proofs. Especially,

we omit details regarding sProps and write them as if they were iProps. Our Coq mechanization [28]

contains precise and complete results.

7.1 Termination Guaranteeing Specifications for Locks
View shift and spinlock. We present a useful lemma for the spinlock spec.

isSL(𝜅𝑆 , 𝑥, 𝐿, 𝑁 ) ∗ ^𝜅𝑆 (ℓ′, 𝑛′) ∗ _𝜅𝑈 ′ ⌈ℓ′, 𝑛′⌉ ∗ ⊲⊳𝜅𝑈 ′ ∗
𝜅𝑈 ′
—— ⊲⊳ shot

𝛾𝑈 ′ ∗ pend
1

𝛾𝑈 ′

locked (𝜅𝑈 ) ∗ Obls𝑖 ((𝜅𝑈 , shot

𝛾𝑈 ) :: Φ) ≡−∗⊤ locked (𝜅𝑈 ′ ) ∗ Obls𝑖 (Φ) ∗ shot

𝛾𝑈 ∗ ⊲⊳𝜅𝑈 ′
(SL-PASS)

SL-PASS allows “passing” the unlock obligation between threads through a view shift. This rule

is necessary when the thread acquiring the lock differs from the one releasing it. It enables the

acquiring thread to fulfill its unlock obligation 𝜅𝑈 by passing the unlock obligation to another

thread, which has made a delayed promise 𝜅𝑈 ′ to unlock the lock. To prevent this lock-passing from

happening indefinitely, where no thread actually unlocks the lock, the lemma requires progress

credits for the finite delay obligation 𝜅𝑆 .
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Ticket lock. Here is the code and a simplified spec for Ticketlock that guarantees termination.

def locktk (𝑛, 𝑜) = Y; 𝑡𝑘 := FAI(𝑛); do { Y; 𝑜𝑤𝑛 := 𝑜 ; Y; } while (𝑡𝑘 ≠ 𝑜𝑤𝑛); Y; (Ticketlock)

def unlocktk (𝑛, 𝑜) = Y; 𝑜𝑤𝑛 := 𝑜 ; Y; 𝑜 := 𝑜𝑤𝑛 + 1; Y;

{Obls
th
( [])} locktk (𝑛, 𝑜) {∃𝜅𝑈 .Obls

th
( [(𝜅𝑈 , shot )]) ∗ ^𝜅𝑈 (𝐿, 1) ∗ locked (𝜅𝑈 )}⊤

{Obls
th
( [(𝜅𝑈 , shot )]) ∗ ^𝜅𝑈 (1, 3) ∗ locked (𝜅𝑈 )} unlocktk (𝑛, 𝑜) {Obls

th
( [])}⊤

As discussed in §4.3, this specification does not require a finite delay obligation because Ticketlock

is starvation-free, unlike a spinlock. Starvation-freedom ensures that threads will eventually acquire

the lock if it is always eventually unlocked, and we only need an unlock obligation 𝜅𝑈 .

However, proving Ticketlock requires reasoning about a non-local linearization point where the

unlocking thread “locks” the lock for the next waiting thread at 𝑜 := 𝑜𝑤𝑛 + 1. To reason about this,

the proof leverages delayed promises. When a thread requests a ticket, it also makes a delayed

promise to eventually unlock, and the current lock holder activates this promise when unlocking,

designating the next thread as the new lock owner.

7.2 Termination Guaranteeing Specification for Concurrent Stacks
Stack specification. We prove a termination guaranteeing specification of Treiber’s stack [45]

and the elimination stack [14]. In particular, we prove a mixture of logically atomic triples (LATs)

[7, 23, 41] and HOCAP [42] style logical atomicity.
4
For example, the triple for a push operation of

a stack with an empty obligation list is given below (ghost names omitted) :

isStack(𝜅, 𝑠) ⊢{AU(𝜆 𝑆𝑡 . Stack(𝑆𝑡), 𝜆 𝑆𝑡 . Stack(𝑣 :: 𝑆𝑡), 𝑅) ∗ Obls
th
( []) ∗ ^𝜅 (1, 1)} (HT-ST)

push(𝑠, 𝑣) {𝑅 ∗ Obls
th
( [])}⊤

Here, AU(𝑃,𝑄, 𝑅) is an “atomic update” [18, 22], which represents the obligation to transform 𝑃

into 𝑄 at some atomic instruction, while returning 𝑅. AU in the precondition allows for a client to

open invariants around push (similar to inv-open), even though it is not an atomic operation.

Treiber stack. Treiber’s stack is a concurrent, lock-free linked list with operations push(𝑠, 𝑣) that
adds 𝑣 to the head of the stack 𝑠 , and try_pop(𝑠) that removes the element at the head of the stack,

or returns ⊥ if the stack is empty. In push and try_pop, the operating threads will perform a loop

that (1) reads and keeps a snapshot of the current head node; (2) attempts to update the head node

to a new node with a CAS operation. This CAS-loop pattern is similar to that of a spinlock: a failed

CAS failed means that some other thread has succeeded in its operation and updated the head node.

Thus, similar to a spinlock, we can guarantee termination of all stack operations by setting up a

liveness obligation that obligates finite usage of the stack.

Elimination stack. Elimination stack [14] is an enhancement of the Treiber stack that improves

scalability by allowing a pair of push and pop that failed its CAS to “eliminate” each other and

succeed. The elimination stack is a principle example of non-local linearization point called helping:

the linearization point of one operation (push) happens in another (a matched try_pop). In Lilo,

reasoning about helping is carried out by sharing atomic updates between threads, as in Iris. A

push thread will put its atomic update inside an invariant, and a try_pop thread will obtain this

atomic update and resolve it in place of the push thread.

Remark. We also note that our proofs are natural extensions of existing safety proofs [17]. We

simply imported the safety invariants and extended them by adding liveness obligations and

progress credits. We expect that porting additional lock-free data structures can be done similarly.

4
Proving the LAT for the elimination stack requires putting the Hoare triple in an invariant, which is currently not possible

in sProp. Iris solves this with nontrivial constructions [18, 40]. We leave proving LAT in sProp as a future work.
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Message Passing with stacks. We test our spec by proving the following:

Y; skip; Y; push(𝑠, 1); do { Y; 𝑣 := try_pop(𝑠); Y; } while (𝑣 = ⊥); Y; ret 𝑣 (STACK-MP)

Under fair scheduling, the program terminates. This is because the first thread will eventually be

scheduled and attempt to push a value to the stack with a CAS instruction. This CAS must succeed,

since the second thread only does a pop operation, which does not modify the stack state. For the

second thread, it must eventually pop the pushed value by the first thread, and return with a value

1. In essence, we exploit the fact the empty pops does not interfere with push operations.

7.3 Client Patterns
Infinite message passing. We prove that INF-MP (§2.1) refines its spec.

while (1) { Y; 𝑋 := 1;

do { Y; 𝑎 := 𝑋 ; } while (𝑎 = 1); Y; print(𝑎); }
while (1) { Y; 𝑋 := 2;

do { Y; 𝑏 := 𝑋 ; } while (𝑏 = 2); Y; print(𝑏); }

while (1) { Y; print(2); } while (1) { Y; print(1); } (INF-MP-SPEC)

The invariant encodes a two-state transition system that switches when a thread sends a message

by updating 𝑋 , and it is designed to let a thread earn progress credits to do induction or find out

that it can exit the loop and update 𝑋 . Delayed promises are used in this example to reduce the

complexity of the invariant, enabling an intuitive reasoning. Specifically, when a thread updates

𝑋 , changes the ghost state, and starts a new loop, a promise from the other thread to update 𝑋

again is required to do induction (using prom-progress and cred-ind) to exit the loop. To carry out

this reasoning, a thread can create a delayed promise at the instant of updating 𝑋 , and the other

thread can activate it at the next instant of updating 𝑋 . We remark that Lilo supports coinductive

reasoning through a coinduction lemma for th

E , which utilizes FreeSim to facilitate the proof [5].

Spinlock passing. We prove that the ‘lock passing’ program (D’Osualdo et al. [9, §2.1]) terminates.

Y; lock(𝑥); Y; 𝐷 := 1; Y; ret 0 Y; do { Y; 𝑑 := 𝐷 ; } while (𝑑 ≠ 1); Y; unlock(𝑥); Y; ret 0 (LP)

The proof of this program uses SL-PASS (§7.1). When thread 1 writes 1 to 𝐷 , it simultaneously

passes the unlock obligation to thread 2, activating thread 2’s delayed promise to unlock the lock.

Then thread 2 proceeds to unlock the lock.

Scheduler non-determinism. We prove the termination of SCH-ND presented in §2.1.

while (𝑑 = 0) { Y; lock(𝑥); Y; 𝑑 := 𝐷 ; Y; unlock(𝑥); }; Y; ret 0 Y; 𝐷 := 1; Y; ret 0 (SCH-ND)

High level reasoning and the invariant of this proof are similar to the one introduced in MP. The

only difference is that there is a lock/unlock pair wrapping the read operation. Thus the only

challenge in proving termination of thread 1 is to ‘replenish’ the progress credits required to

lock/unlock, and this is enabled by relating the finite delay obligation 𝜅𝑆 of the spinlock with the

obligation of thread 2 to write. With a promise from thread 2, thread 1 can exit the loop, or obtain a

progress credit and restore the initial state of the inductive hypothesis.

8 Related Work and Discussion
Concurrent separation logic. Concurrent separation logics [3, 33] (CSLs) are oriented toward ver-

ifying properties of concurrent programs in a thread-local way. Modern CSLs, notably Iris [21, 23]

and its relatives achieve a high level of abstraction for reasoning about various safety proper-

ties [8, 19, 26, 32, 34, 37]. Additionally, there exists several relational separation logics for proving

refinements [11, 12, 43, 44]. However, unlike Lilo, they do not develop high-level abstractions that

support liveness reasoning.
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Separation logic for liveness. We described themost closely related work to Lilo in the background

(§2). We now discuss how Lilo relates to some other existing separation logic for liveness.

Reinhard et al. [36] propose a separation logic for verifying termination of programs that abruptly

terminate. They develop predicates called “obligation” and “credit”, which are only superficially

related to Lilo. For instance, their notion of a credit is a token to allow a thread to busy-wait. More

importantly, their rule for a loop forbids the looping thread to hold any obligations, which severely

limits how threads can depend on liveness of other threads. In fact, allowing threads to depend on

other threads’ liveness is an important challenge for a logic for liveness because it needs to prevent

circularity, and TaDA Live [9], LiLi [29, 30] and Lilo all put significant effort into this.

Timany et al. develop a CSL Fairis using Trillium [44], that is geared toward proving liveness

of concurrent programs under fair scheduling via refinement. Although Lilo and Fairis shares a

similar verification goal, Lilo’s advantage lies in its novel abstractions that enable modular liveness

reasoning. In addition, Lilo develops modular specifications that guarantee termination and address

blocking and delay. These high-level abstractions are not developed in Fairis.

Lilo’s notion of obligation list is inspired by the notion of obligations in TaDA Live [9]. Both of

them are designed to support liveness reasoning in a thread-local way and represent some notion

of obligation that must be fulfilled. However, their meta-level mechanism is completely different.

Specifically, TaDA Live adopts a classical interpretation of the separating conjunction, which means

𝑃 ∗𝑄 ⇏ 𝑃 , and this is crucial for the soundness of TaDA Live. In contrast, Lilo is based on Iris-style

resource algebra (without step-indexing) which leads to an affine logic that allows 𝑃 ∗𝑄 ⇒ 𝑃 , and

the soundness of Lilo is based on the soundness of FOS. We believe this makes Lilo a favorable

approach to adapt to existing frameworks that utilize Iris-style resource algebras.

Credits as a resource. Lilo’s progress credits is influenced by existing work that represent credits

as a resource, in particular Mével et al. [32]’s time credits for reasoning about time complexity, and

Spies et al. [39]’s transfinite time credits for proving termination. However, both of them target

sequential programs and do not have a good support for concurrent programs.

Higher-order ghost states. To the best of our knowledge, there are currently two approaches to

higher-order ghost states in separation logic. One approach is to utilize step-indexing, as done by

Iris [20], which is known to be ill-suited for liveness reasoning as discussed in §5. Moreover, it is

known that step-indexing fundamental conflicts with modular transitivity [2, 15, 16], making it

inadequate for frameworks such as CCR [38].

Another approach is to separate the syntax of the logical assertions from its semantic interpre-

tation, pioneered by Nola [31]. Nola shows that it is possible to support Iris-style invariants and

borrows without step-indexing, and Matsushita applies Nola to the verification of type systems,

such as Rust-style borrows. We adapt this approach and develop stratified propositions to enable

higher-order reasoning in Lilo without step-indexing, and apply it to verify liveness of concurrent

programs. We believe Nola-style approach and our stratified propositions are applicable to other

non-step-indexed frameworks, such as Simuliris [13] and CCR [38].

However, we remark that stratified propositions currently does not support impredicative features

of Iris. Consequently, as discussed in §7.2, proving the LAT for the elimination stack is currently

not possible. We believe this is because the LAT requires impredicative features, e.g., putting a

predicate of index 𝑖 + 1 in an invariant of index 𝑖 .

Limitations and future work. As discussed in §4.3, Lilo currently does not support specifications

for functions involving unbounded dynamic nesting of blocking functions. Also, as discussed above,

Lilo’s stratified propositions currently does not support Iris’s LATs. We leave deeper investigations

to these limitations as future work.
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