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Abstract

This thesis presents FOS (Fair Operational Semantics), a theory capable of ex-

pressing various notions of fairness in the form of operational semantics and

enabling reasoning principles for these notions of fairness. Fairness properties

state that a sequence of bad events cannot happen infinitely before a good event

takes place. These properties are often crucial in program verification in two

ways. First, fairness properties can serve as a specification, enabling a more

precise description of an implementation beyond safety. Second, program veri-

fication, such as the verification of termination of a concurrent program, often

depends on fairness properties. This work shows that FOS is useful in both cases

by developing specifications that represent various concepts of fairness proper-

ties, developing thread-local verification techniques for fairness properties, and

verifying examples based on these techniques.

Keywords: Operational Semantics, Concurrency, Fairness, Program Verifica-

tion

Student Number: 2021-26995
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Chapter 1

Introduction

In program verification, fairness properties, which state that a sequence of bad

events cannot happen infinitely before a good event takes place, are often crucial

in two ways. First, fairness properties can serve as a part of a specification, en-

abling a more precise description of an implementation beyond safety. Second,

verification of a program, such as termination, can depend on fairness prop-

erties. However, general methods for expressing and reasoning about various

kinds of fairness properties are relatively underdeveloped compared to those for

safety properties.

This thesis presents FOS (Fair Operational Semantics), a theory capable

of expressing various notions of fairness in the form of operational semantics

and enabling reasoning principles for these notions of fairness. This work shows

that FOS is useful by developing specifications that represent various concepts

of fairness properties, developing thread-local verification techniques for fairness

properties, and verifying examples based on these techniques. Specifically, FOS

enables thread-local reasoning about fairness by providing thread-local sim-

ulation relations equipped with separation-logic-style resource algebras. This

technique is used in the verification of a ticket lock implementation and a client
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of the ticket lock under weak memory concurrency, which requires reasoning

about different notions of fairness including the fairness of a scheduler, fairness

of the ticket lock implementation, and even fairness of weak memory.

The result of this thesis was published in PLDI’2023 under the title “Fair

Operational Semantics” [18]. Also, the theory of FOS and the examples are

formalized in the Coq proof assistant.
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Chapter 2

Fair Operational Semantics

2.1 Introduction: Fair Operational Semantics

Although safety properties (i.e., something bad never happens under a cer-

tain condition) have been major goals of verification, fairness properties (i.e.,

something bad cannot happen indefinitely without anything good occurring)

are also often crucial in verification, in particular, for concurrent programs. For

example, fairness assumptions about the underlying system—such as fairness

about the scheduler (i.e., a thread cannot be delayed by the scheduler indefi-

lockabs();

X := 42;

unlockabs();

do {

lockabs();

x := X;

unlockabs();

} while (x = 0)

print(x);

(CLI)

v
skip; print(42); (CLS)

Figure 2.1 An example of concurrent program verification.
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nitely), or fairness about weak memory (i.e., memory cannot delay committing

a write indefinitely)—are often required to verify concurrent programs. More-

over, customized concepts of fairness are required when working with custom

libraries: for example, fairness about acquiring a lock provided by a custom

ticket lock library (i.e., a lock request cannot fail indefinitely given that the

lock is available).

However, general methods for abstractly expressing various concepts of fair-

ness and reasoning about them are relatively underdeveloped. For example,

separation logics such as Iris [12] provide a flexible and powerful mechanism for

specifying and reasoning about arbitrary safety properties. In contrast, existing

work in the fairness domain such as TaDA-Live [5] and LiLi [22] are com-

paratively limited in their power, foremost in that they can only handle fixed

notions of fairness instead of providing a general mechanism for expressing and

reasoning about custom fairness properties.

Clearly, it is desirable to have a general mechanism capable of (i) capturing

various kinds of fairness, and (ii) providing reasoning principles to both validate

that a certain implementation is fair and verify client code assuming fairness

of components. Consider Fig. 2.1 as an example, where a client program CLI

consisting of two threads utilizes a library-provided lock to protect a shared

location X initialized to 0. The first thread sets X to 42, while the second

thread repeatedly reades from X until reading a non-zero value, upon which it

will print the read value.

Intuitively, CLI refines the specification CLS (where the first thread does

nothing and the second prints 42) assuming that the scheduler and lock are

‘fair’. For example, CLI fails to refine CLS if the scheduler is unfair and schedules

thread 2 only; even if the scheduler is fair, an unfair lock giving the lock only

to thread 2, would result in an execution trace of CLI that cannot be captured

by CLS.

Thus to prove that CLI refines CLS, one requires (i) a flexible mechanism
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for expressing the fairness of schedulers and locks, and (ii) reasoning principles

for reasoning about such flexible fairness properties. Moreover, the ability to

express and reason about general fairness properties enables a proof to be split

in two ways: (i) one may exploit the fairness assumptions when verifying client

code (e.g., proving that CLI refines CLS), and (ii) separately validate that a

specific implementation satisfies the fairness assumption (e.g., proving that a

specific scheduler or a lock is actually fair).

FOS, a Theory for Fairness. In this paper, we present FOS (Fair Oper-

ational Semantics), a theory for expressing and reasoning about fairness as an

operational semantics. FOS provides:

� The standard notion of operational semantics extended with a special kind

of events, called fairness events, that allows expressing arbitrary kinds of

custom fairness properties.

� A simple global simulation relation that allows one to validate (for li-

braries) and exploit (for clients) fairness when proving refinements.

� A thread-local version of the aforementioned simulation and a logic capa-

ble of employing separation-logic style reasoning to perform thread-local

reasoning and simplify proofs.

We demonstrate the generality and power of FOS by (i) specifying fairness

of the scheduler, locks, and weak memory; (ii) proving fairness of the scheduler

for a simple scheduler implementation and fairness of the lock for a ticket lock

implementation; and (iii) exploiting these three kinds of fairness properties to

verify client code (e.g., CLI v CLS). Note that existing work for reasoning

about fairness is based on simple sequentially consistent concurrency, whereas

we use FOS to model a (fair) weak memory concurrency model and verify our

examples under the model. The theory of FOS is mechanized in the Coq proof

assistant [30].
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Paper Structure. The remainder of the paper is structured as follows. §2.2

first illustrates how fairness properties can be expressed and reasoned about in

a global fashion in FOS. §2.3 extends these ideas to show how FOS expresses

fairness under concurrency, and shows how thread-local reasoning about fairness

can be achieved in FOS. §2.4 and §2.5 formalize the high-level ideas presented

in §2.2 and §2.3. §2.6 presents the module system of FOS, used to modularize

proofs and define specifications capturing various notions of fairness, and §2.7

presents the details of the aforementioned thread-local reasoning. §2.8 presents a

high-level overview of the verification of our motivating example. §2.9 concludes

with related work.

2.2 Main Ideas: Formally Expressing Fairness

In this section, we aim to illustrate the key abilities of FOS: (i) How can we

abstractly encode assumptions about fairness? (§2.2.1), (ii) How can one prove

that a client program refines its specification assuming fairness about a library?

(§2.2.2), and (iii) How can one prove that a library implementation refines its

specification, validating the fairness assumption about the library? (§2.2.3).

We illustrate these abilities via the following example LOT, which draws

a Boolean value via a lottery function lottery(), and prints ”win!” whenever

that value is true:

loop { if lottery() then print(”win!”) else skip } (LOT)

Note that LOT is sequential even though fairness commonly comes into play

when reasoning about concurrent programs. Nevertheless, LOT is expressive

enough to illustrate the key ideas behind FOS. The fairness assumption in

LOT is that lottery() cannot return false indefinitely without returning true.

Under this assumption, LOT prints infinitely many ”win!”s, thus refining the

following program:

loop { print(”win!”) } (WIN)
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The goal of this section is to first show how the assumption that lottery()

is fair can be encoded as a semantics of code, which doubles as a specification

(§2.2.1), prove that LOT indeed refines WIN under this assumption (§2.2.2),

and finally show how a concrete implementation of lottery() can be shown to

validate this assumption (§2.2.3).

2.2.1 Fairness as a Semantics

As briefly mentioned in §2.1, fairness is the concept of ensuring that only a finite

number of ‘bad events’ happen before a ‘good event’ takes place. FOS captures

this concept by defining two fairness events: good and bad. Intuitively, good

is triggered when a good event happens (e.g., lottery() triggers good when

returning true), and bad is triggered when a bad event happens (e.g., lottery()

triggers bad when returning false).

Observe that in a general setting, there are typically many entities for which

fairness should be ensured (e.g., each thread in a scheduler). In such a setting,

a specific event (e.g., thread 1 being scheduled) may be good for certain entities

(e.g., thread 1) and bad for other entities (e.g., the other threads). FOS for-

malizes this intuition by triggering fairness events according to a fairness map

fmap, which maps a fairness id to a fairness event good or bad. A fairness id is a

unique identifier for each entity vying for fairness, one for each kind of fairness

one wishes to consider: for example, each thread would have two fairness ids in

a scenario considering both lock and scheduler fairness.

In this example, there is only one entity that needs fairness to be ensured

(the program), and only one kind of fairness (the lottery), hence there is only

one fairness id lot. Thus our fmap is of type fmap : {lot} 7→ {good, bad}.1

In order to actually trigger the fairness events within a fairness map, one

requires a construct to trigger these events in code. This role is fulfilled by the

1A formal definition of fmap includes ε (an empty event) in the codomain, but we choose
to ignore this for the time being.
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fairness constructor FAIR in FOS, whose basic semantics is to take as argument

an fmap and trigger all fairness events within the map for the appropriate

fairness ids.

Modelling fairness through good and bad events that are triggered explicitly

throughout the program allows us to give a formal definition of what it means

for a program trace to be fair:

Definition 2.2.1 (Fair Trace) Consider a program P equipped with a set of
fairness ids ID, and a trace t obtained by executing P . For a fairness id id ∈ ID,
let tid be a sub-sequence of events of t obtained by taking only the fairness events
that are associated with id.

We say that t is a fair trace of P iff every tid does not contain an infinite
sequence of bad events that precedes a good event. Otherwise, we say that t is
an unfair trace of P . If all possible traces of P are fair traces, then we say that
P is fair.

Following Definition 2.2.1, consider the following specification of lottery()

that encodes fairness of lottery() for lot (PICK(B) nondeterministically picks

a Boolean value):

def lottery()spec = if PICK(B) then FAIR([lot 7→ good]); ret true

else FAIR([lot 7→ bad]); ret false
(SPEC)

Here FAIR takes the fmap [lot 7→ good] when lottery() returns true, which

captures that a good event for lot happens. On the other hand, FAIR takes

[lot 7→ bad] on the false branch, capturing that a bad event for lot has occurred.

As stated in Definition 2.2.1, a fair execution (trace) of SPEC is a trace

where each fairness id does not accumulate an infinite number of bad events

before a good event. In tandem with triggering fairness events, the fairness

constructor FAIR also filters out such unfair traces. A good way to understand

FAIR is as a monitor that keeps track of the fairness events that each fairness id

sees via the supplied fairness maps, and filters unfair executions out. One can

then understand that the following unfair execution trace is not a valid trace

8



of SPEC, as FAIR prohibits such unfair traces:

[lot 7→ bad] :: [lot 7→ bad] :: [lot 7→ bad] :: [lot 7→ bad] :: ...

On the other hand, traces such as the following are allowed, as each bad has a

following good:

[lot 7→ bad] :: [lot 7→ good] :: [lot 7→ bad] :: [lot 7→ good] :: ...

In the end, the fairness events good and bad are silent events that have no

effect on the actual behavior of the program; they are merely used to encode

fairness via FAIR. Thus SPEC becomes a valid fair specification for lottery()

that captures exactly the ‘fair’ behavior of a lottery.

As shown, FOS allows one to encode desired notions of fairness directly as

a piece of code but still in an abstract form through the use of fairness maps

and FAIR. This puts us in a very favorable position for our next task, to prove

that LOT refines WIN assuming that lottery() is fair, as one may now utilize

SPEC directly to build the refinement proof.

2.2.2 Proving that LOT Refines WIN: Exploiting Fairness

Based on our encoding of fairness as a semantics, we now wish to prove that

LOT where the semantics of lottery() are given by SPEC (which we denote

as LOT[SPEC]) refines WIN. In proving refinement, we take the standard ap-

proach of constructing a simulation that matches arbitrary program steps from

the target to program steps of the source.

What makes refinement in FOS special is the semantics of FAIR, which filters

out any unfair execution. Because we are left only with fair executions, we call

refinement in FOS as fair refinement, as it only maps fair target behaviors to fair

source behaviors. Then FOS develops a simulation that ensures fair refinement;

given that traditional simulations prove refinement with stepwise rules, FOS

also aims for a simulation providing such stepwise rules, without having to

reason about the entire execution trace. The main obstacle in developing such

9



a simulation is the very presence of FAIR, which decides the fairness based on

the entire trace. We overcome this by developing stepwise simulation rules that

are capable of dealing with the FAIR constructs directly, by correctly reflecting

their semantics (filtering out unfair traces) in the simulation.

Fairness Counter. To reason about FAIR in our simulation rules, we intro-

duce the concept of a fairness counter, which intuitively counts the number

of bad events that happen before a good event. Formally, a fairness counter is

a per-program (source / target) map whose domain is identical to the fairness

map of the program (that is, the entities for which fairness must be ensured)

and whose range is a set equipped with a well-founded relation. In this example,

we take our fairness counter c to be of type cmap : {lot} → N; i.e., a map that

assigns a natural number to lot.

The key idea behind the fairness counter is that each entity is mapped to

a value which cannot decrease indefinitely. As stated, this counter counts the

maximum number of bad events that an entity may see before encountering a

good event: a value cannot decrease indefinitely under a well-founded relation,

thus limiting the number of bad events that may happen to a finite value. The

simulation keeps track of the fairness counter along with the continuation of

the program, and will update the fairness counter when dealing with FAIRs in

the source or target program—a bad event decreases the counter, while a good

event will reset this counter to some arbitrary value.

Formally, we capture this update mechanism as a relation c ↪→f c′, and

say that c′ updates c given the fairness map f (the fairness map is required to

determine the fairness ids for which the fairness counter should decrease and be

reset). The exact definition of c ↪→f c′ depends on the set of entities considered;

in this example, c ↪→f c′ can be defined as:

c ↪→f c′ , match f(lot) with || good ⇒⇒ > || bad ⇒⇒ c′(lot) < c(lot)

This definition states that c′ updates c if (i) lot triggers good, in which case

10



any c′ updates c, or (ii) lot triggers bad, in which case the counter of lot must

decrease. Because the counter of lot cannot decrease below 0, updating the

fairness counter ensures that unfair traces in which lot triggers bad infinitely

are not considered when constructing our simulation; this corresponds to the

semantics of FAIR which filters out unfair traces, allowing the fairness counter

to capture the semantics of FAIR within a simulation.

Exploiting Fairness Now, we wish to construct a simulation that relies on

lottery() being fair to prove that LOT[SPEC] refines WIN. The following rule

enables this by dealing with FAIR in the target program when constructing a

simulation:
simft
∀c′. (c ↪→f c′)→(c′, k) . S

(c, FAIR(f); k) . S

where k denotes the continuation, S the source, and the relation . denotes

that the right-hand argument of . simulates the left-hand argument. Note that

SIMFT (and our simulation rules in general) relates a pair of a fairness counter

and a continuation. The rule consumes a FAIR from the target, and intuitively

applies the effect of the FAIR construct by updating the fairness counter from c

to c′. In particular, SIMFT states that we only need to consider cases where c′

updates c under f : as we will illustrate below, this has the effect of discarding

unfair executions of the target in the simulation, just as FAIR filters out unfair

executions.

As an example, consider an application of SIMFT in order to prove the

following simulation:

([lot 7→ i], FAIR([lot 7→ bad]); k) . S

SIMFT applied to this proof goal requires that we prove a simulation for any c′

that updates [lot 7→ i] when lot triggers bad: that is, any [lot 7→ i′] for i′ < i.

If lot keeps on losing due to an unfair execution, the simulation proceeds until

11



the following proof goal is reached:

([lot 7→ 0], FAIR([lot 7→ bad]); k) . S

At this point, observe that there does not exist any c′ such that c′ updates

[lot 7→ 0], as 6 ∃i′ ∈ N. i′ < 0. Thus the premise of this proof goal becomes a

vacuous truth, and it follows that the simulation trivially holds for such unfair

executions: this is the effect of SIMFT discarding unfair target executions in the

simulation, similar to how FAIR filters out unfair executions!

On the other hand, suppose that lot encounters a good event and wishes to

prove the following:

([lot 7→ i], FAIR([lot 7→ good]); k) . S

In this case, the updated counter c′ may be an arbitrary natural number: this

ensures that fair traces are not discarded, no matter how many bad events

precede a good event. Since a good event returns true, the simulation will then

be able to match a print from LOT[SPEC] with a print from WIN, and further

apply the same reasoning inductively to prove that LOT[SPEC] indeed does

refine WIN.

The power of SIMFT allowing us to discard unfair traces of the target is what

makes constructing a simulation that considers only fair behavior possible: we

call this property fairness exploitation.

2.2.3 Proving that lottery() is Fair: Validating Fairness

To wrap this section up, we consider constructing a simulation in the opposite

direction to §2.2.2: how can we deal with FAIRs in the source program? Such

scenarios emerge when one is trying to prove that a certain implementation

is indeed fair: e.g., when proving that a specific implementation of lottery()

refines SPEC.

12



Consider the following two implementations of lottery():

def lotfair() = if x then x := false; ret true else x := true; ret false

def lotunfair() = ret false

(IMPL)

Before discussing the fairness of lotfair and lotunfair directly, observe that

both lotfair and lotunfair are trivially ‘fair’ in themselves as their executions

are finite. However, when used with LOT, clearly lotunfair becomes unfair while

lotfair is still fair. As illustrated, the context in which an implementation is

used has an effect on whether the implementation is fair or not; we will thus

prove that LOT[lotfair] refines LOT[SPEC] in order to prove that lotfair is

a fair implementation.

SIMFS is the rule for dealing with FAIRs from the source in the simulation

(T denotes the target):

simfs
∃c′. (c ↪→f c′)∧T . (c′, k)

T . (c, FAIR(f); k)

Like SIMFT for consuming FAIRs in the target, SIMFS consumes FAIRs from the

source and models the effect of FAIR in the simulation. In contrast to SIMFT,

SIMFS states that there must exist a fair update of the fairness counter c: this

ensures that there must exist a fair behavior of the target corresponding to the

fair source behavior in order for the simulation to hold.

To see this effect, let us attempt to prove that LOT[lotunfair] fairly refines

LOT[SPEC] (which is clearly untrue). Assume this time that we are starting

with the following proof goal, where FAIR occurs in the source LOT[SPEC]:

T . ([lot 7→ i], FAIR([lot 7→ bad]); k)

Observe that because the target LOT[lotunfair] has a trace where it cannot

print any ”win!”s due to lotunfair returning false indefinitely, the source must

also be able to match this trace for a simulation to hold. Clearly, lot must trigger

bad indefinitely within this source-trace as well: thus the fairness map is fixed

13



to [lot 7→ bad], and applying SIMFS multiple times in this fashion will eventually

again yield a proof goal where the fairness counter of lot is zero:

T . ([lot 7→ 0], FAIR([lot 7→ bad]); k)

Here, observe that we cannot apply SIMFS to consume the source-FAIR anymore

as there no longer exists a fairness counter that can update [lot 7→ 0]. In essence,

the fairness counter limits the behavior of the source to be fair, similar to how

FAIR in the source filters out unfair traces of the source. The fact that the target

LOT[lotunfair] has unfair behavior, which cannot be simulated by the only-fair

behavior of the source, is reflected by SIMFS becoming no longer applicable

when constructing the simulation. Because we can no longer consume the FAIR

of the source, the simulation can no longer proceed and thus we cannot prove

that LOT[lotunfair] refines LOT[SPEC]!

In contrast, suppose now that we are correctly trying to prove that LOT[lotfair]

refines LOT[SPEC]. Because LOT[lotfair] is fair and emits ”win!” every other

iteration, the source program can also let lot trigger good when constructing

the simulation:

T . ([lot 7→ i], FAIR([lot 7→ good]); k)

At this point, applying SIMFS allows us to update c′ to any value; the simulation

can thus choose a value larger than the number of bad events it will see before

seeing another good event (here, even 1 will suffice as the target LOT[lotfair]

alternates between printing ”win!” and not). One can successfully prove that

LOT[lotfair] refines LOT[SPEC] by applying this reasoning inductively.

The reasoning principle enabled by SIMFS stands in direct contrast with the

reasoning principle enabled by SIMFT, which allowed us to discard unfair target

traces by corresponding them to vacuous truths. In contrast, SIMFS requires

that the target must only exhibit fair behavior for it to be able to refine a (fair)

source: we call this principle fairness validation.

14



2.3 Main Ideas: Concurrency and Thread-Local Rea-
soning

Having established the basic reasoning principles behind FOS, we now illustrate

how fairness under concurrency with schedulers and locks can be modeled in

FOS (§2.3.1), and then how refinement for concurrent programs can be proved

in FOS, particularly in a thread-local manner (§2.3.2).

The running example in this section is identical to the motivating example

from §2.1 (memory locations and variables in the paper, stated otherwise, are

initialized to 0):

b
; lockabs();

b
; X := 42;

b
; unlockabs();

b
;

do {
b

; lockabs();
b

; x := X;
b

; unlockabs();
b

;

} while (x = 0)
b

; print(x);
b

;

(CLI)

We assume sequential consistency as the memory model for CLI; later in §2.6.1,

we will encode memory fairness to allow the use of weak memory models as well.

As discussed, CLI, is a worker (thread 1) and a waiter (thread 2) process, which

relies on a lock to protect non-atomic accesses to the shared memory location

X. In this paper, we define the semantics of yielding such that a thread will

yield if and only if it meets an explicit yield instruction
b

in the program:

this models threads to be altruistic, and also has the effect of treating program

fragments between
b

s as atomic.

As discussed in §2.1, we wish to prove that CLI fairly refines the following

specification CLS:

b
; skip;

b
;

b
; print(42);

b
; (CLS)

To prove this refinement, one must be capable of establishing that thread 1

eventually acquires the lock, which in turn depends on fairness of the sched-
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uler and the lock. We thus formally express scheduler and lock fairness first in

§2.3.1, then illustrate the key argument required for establishing that thread 1

eventually acquires the lock during a fair execution in §2.3.2.

2.3.1 Fair Specifications for Concurrent Components

To prove that CLI fairly refines CLS, one first requires a specification that

encodes the fairness of the scheduler and the lock. In a concurrent setting,

this means that fairness should be ensured for all threads, which are vying to

get scheduled or acquire the lock. We can express these two distinct kinds of

fairness by setting the fairness ids ID as the disjoint union of thi, the ids for

scheduler fairness, and lki, the ids for lock fairness, where i is a thread id. Thus

ID becomes the domain of the fairness map fmap and the fairness counter cmap:

f ∈ fmapID , ID→ {good, bad} c ∈ cmapID , ID→ N

The events good and bad again model good and bad events: in this case, a good

event is when a thread is scheduled or successfully acquires a lock.

Scheduler Fairness. In this paper, concurrency is modeled via thread in-

terleaving, where a thread pool is a finite map from a thread id (in N) to a

code. Then the scheduler manages a thread pool by kicking out threads when

they terminate; we call the remaining threads in the pool valid threads, and

denote their ids as Nv. Under this thread interleaving model, a scheduler may

be viewed as a program that picks a valid thread id and executes the code of

that thread; afterward, a yield
b

will return execution to the scheduler which

will proceed to schedule the next thread.

A fair spec of a scheduler may be written as follows, where P represents the
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thread pool:

λP. while(Nv 6= ∅)

{ n← PICK(Nv); FAIR([thn 7→ good, {thm | m ∈ Nv ∧m 6= n} 7→ bad]);

exec(P (n)) }
(SCH)

In SCH, PICK nondeterministically picks a valid thread id n to execute. The

fairness of SCH is guaranteed by the following FAIR constructor, whose fairness

map assigns good to the scheduled thread and bad to all other threads: follow-

ing the semantics of the FAIR constructor, it is clear that any fair execution

of SCH will result in valid threads becoming scheduled infinitely often. This

captures exactly the concept of ‘scheduler fairness’ that programmers rely on

when writing programs: that running threads will not be starved indefinitely

by the scheduler.

Throughout the paper, we assume that schedulers satisfy SCH if not stated

otherwise; this allows us to exploit scheduler fairness. We emphasize that SCH

represents only the fair schedulers. Therefore, if a system’s correctness relies

on SCH, one should also validate the fairness of the scheduler implementation

employed by the system to guarantee the full correctness of the system.

Lock Fairness. In addition to scheduler fairness, proving that CLI refines

CLS requires fairness of the lock : clearly CLI will fail to terminate if, e.g., the

lock implementation is unfair and never grants the lock to thread 1. Encoding

this fairness requirement once again requires a specification for the lock, which

in addition to guaranteeing fairness as desired, should ideally abstract away im-

plementation details such as data structures or memory accesses. The second

desideratum allows different concrete implementations to refine the specifica-

tion, as done in §2.2.3.

Fig. 2.2 presents such a specification for fair locks. Consider the lock function

lockabs(): here, each thread with thread id i is represented using a new entity
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W ⊆ {lki | i ∈ N} own ∈ B
def lockabs() =
n = GetTid; W = W ∪ {lkn}; //L1
loop { if own then

b
; else break } //L2

own = true; W = W \ {lkn}; FAIR([lkn 7→ good,W 7→ bad]) //L3
ret //L4

def unlockabs() =
assume(own = true); //L1
own = false; //L2
ret //L3

Figure 2.2 A fair spec of fair locks, ABSLock.

lki, which is a new fairness id for each thread required to ensure that a good

obtained via a scheduling event does not also result in a good of the lock, and

vice versa. The specification is straightforward: a thread will add itself to the

waiting set W and enter the loop to wait for a lock, then trigger a good for

itself and bads for all other threads in W upon acquiring a lock. This implies

that a thread waiting for the lock must eventually acquire the lock if the lock is

available, as it will accumulate an infinite number of bads otherwise (assuming

scheduler fairness). On the other hand, a thread outside of the waiting set W

is unaffected by the fairness events triggered by the lock: this captures the

common concept of ‘lock fairness’, in that a thread attempting to acquire an

available lock will eventually succeed.

(T, S: globally fixed memory locations)

def locktk() = t := FAI(T ); do { s := S; } while(t 6= s)

def unlocktk() = s := S; s = s+ 1; S := s;

(TicketLock)

To conclude the discussion on fair concurrent specifications, let us briefly

consider how the ticket lock implementation in TicketLock can validate the fair

specification given in Fig. 2.2. TicketLock issues a ticket counter t to every

thread that attempts to acquire the lock; this counter is guaranteed to strictly

increase due to the fetch-and-increment instruction FAI(T ), which increments

the value stored at the memory location T by 1 and returns the old value. When
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a thread calls unlocktk(), the service counter stored in the memory location S

is increased: this allows the ticket lock to service the next thread that holds the

ticket corresponding to the current service counter.

TicketLock is fair under sequential consistency and scheduler fairness, re-

fining the fair specification from Fig. 2.2. This is because the ticketing scheme

ensures that only a finite number of threads may be queued before a thread

to acquire a lock; this means that a thread can only trigger a finite number of

bads before successfully acquiring the lock, ensuring that the trace is fair.

2.3.2 Exploiting Fairness Under Concurrency via Thread-Local
Reasoning

Given the fairness properties we have encoded in §2.3.1, we now illustrate how

one may actually prove that CLI fairly refines CLS. The key intuition in this

section is that one may perform induction on the fairness counters when con-

structing a simulation to discard unfair behavior. Furthermore, these fairness

counters may be treated as shared state between threads, which enables thread-

local reasoning when constructing a simulation.

Global Proof by Induction. Before illustrating how thread-local reasoning

can be performed in FOS, we first establish a global argument to prove that

CLI fairly refines CLS; we will later show that this argument extends naturally

to thread-local reasoning.

One of the main reasoning patterns enabled by fairness is the ability to

argue that something good must happen eventually in a fair execution—e.g., ,

thread 1 eventually acquires the lock in CLI. In CLI, this is required to ensure

that the loop in thread 2 of CLI eventually exits in a fair execution, which

allows one to match the final print with the print in CLS when constructing a

simulation.

The key idea in proving that a good event happens is to construct a value

that decreases but cannot decrease infinitely, until the good event is triggered.

19



The fairness counter c (from the global simulation relation in §2.2) captures

perfectly this required decreasing value. Recall that the fairness counter also

allows one to discard unfair executions of the target: thus by performing in-

duction on the fairness counter, one can focus only on fair executions when

constructing the simulation.

To see this strategy in detail, reconsider the fact that we must show thread

1 of CLI eventually acquires the lock (a good event) when constructing a simu-

lation. Intuitively, lk1, the fairness counter for thread 1 acquiring the lock, can

serve as the decreasing value for this good event, as thread 2 acquiring the lock

instead will trigger a bad for lk1. Then by performing induction on lk1, one

can establish that either (i) thread 1 acquires the lock and writes 42 to X, or

(ii) the execution being considered is unfair, as lk1 cannot decrease indefinitely.

To be more formal about the argument, one must also consider the fact that

thread 2 progresses and eventually releases the lock (otherwise thread 1 will not

accumulate a bad). This can be done by introducing an additional counter n,

which keeps track of the remaining lines of code (i.e., the number of remaining

yields) until the lock is released. Of course, progress of thread 2 relies on thread

2 being scheduled—which can in turn be captured by the fairness counter th2.

Thus the actual decreasing value for thread 1 to acquire the lock is given as

a tuple (lk1, n, th2), where the order of the tuples is given by lexicographic

order: lk1 is the most significant as the subsequent two counters serve to ensure

that lk1 decreases. A formal proof would perform induction on this tuple to

ensure progress as opposed to merely lk1.

Thread-Local Reasoning for Fair Refinement. Given the aforementioned

proof strategy based on induction on a decreasing value, we now show how this

reasoning may be performed in a thread-local manner to prove that CLI fairly

refines CLS without considering all thread interleavings.

As mentioned, the key idea that enables local reasoning for FOS is that the
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fairness counter—which captures the concept of fair behavior in the simulation—

can naturally be treated as shared state between threads. This allows each

thread to perform local reasoning via a shared protocol, in which threads

rely on other threads upholding the protocol when resuming execution from a

yield
b

, and conversely guaranteeing that the protocol is satisfied before yield-

ing. Through this rely-guarantee reasoning, one can perform induction thread-

locally to prove that a refinement between threads holds using almost the same

argument that was applied globally, without having to consider all thread in-

terleavings in a global simulation.

In our example, consider the following protocol which states that threads

satisfy one of the given three states on a yield. This protocol is used to ensure

that thread 1 eventually acquires the lock:

� Either the lock is unowned (own = false),

� Thread 1 holds the lock, or

� Thread 2 holds the lock and the tuple (lk1, n, th2) decreases.

Here, it is true that n is local to thread 2 and inaccessible to thread 1; we will

temporarily assume that n is a ‘ghost’ variable that is managed by thread 2 on

every yield for the sake of presentation.

Consider this protocol in the context of thread 2: if thread 1 does not hold

the lock, then (i) thread 2 yields in a state where own = false (directly after

releasing the lock), or (ii) it will have decreased the tuple (lk1, n, th2). This

is because thread 2 acquiring the lock will either trigger a bad event for thread

1, or decrease n by progressing within the loop and reducing the number of

remaining yields. Thus thread 2 guarantees that it upholds the protocol at each

point it encounters a yield, without considering the behavior of thread 1 at all.

On the other hand, thread 1 may rely on the protocol being upheld when

resuming execution at a yield point. If own = false, then thread 1 acquires the
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lock and the simulation can make progress. If own = true but thread 1 does

not have the lock, then thread 1 decreases the given tuple as th2 decreases due

to thread 1 winning in the scheduler. Thus thread 1 can also guarantee that

the protocol is upheld, without considering the behavior of thread 2.

As the shared protocol is guaranteed by both threads, one may perform

induction locally in a thread to ensure progress. For example, in thread 1, ap-

plying induction using the protocol results in that either (i) thread 1 acquires

the lock, or (ii) the execution is unfair, as the tuple failing to decrease indi-

cates that the fairness counters lk1 or th2 cannot decrease, implying unfairness.

Thus thread-local reasoning based on this protocol shows that executions where

thread 1 cannot acquire the lock and does not terminate are unfair—and are

thus discarded, allowing one to construct a thread-local simulation showing that

thread 1 of CLI fairly refines thread 1 of CLS!

As shown above, protocols for thread-local reasoning about fairness often

require the use of ghost values such as n, which may not be easy to expose

to other threads. Fortunately, existing work on modern concurrent separation

logic [12] allows us to express such protocols as invariants. FOS blends natu-

rally with this idea, resulting in a simulation technique where true thread-local

reasoning is enabled via separation logic; this technique is formalized in §2.7.

2.4 Core Definitions of FOS

We now formalize the ideas presented so far in Sections 2.4 to 2.6. In this sec-

tion, we present (whole-program) fair semantics, refinement, and a simulation

relation, which are straightforward formalizations of the ideas in §2.2; concur-

rency and the module system are formalized in §2.5 and §2.6.

2.4.1 Definitions of Fair Operational Semantics

To write fair programs (e.g., those in §2.2), we first define a language FL (fair

language) in Fig. 2.3. FL is coinductively defined with three constructors FAIR,

22



ID : Type flag , {good, bad, ε} fmapID ∈ ID→ flag R : Type

FLID, R
coind
= || FAIR(f ∈ fmapID) >>= (k ∈ ()→ FL)
|| PICK(X : Type) >>= (k ∈ X → FL)
|| Obs(fn ∈ string, args ∈ list Val) >>= (k ∈ Val→ FL)
|| ret (r ∈ R) || stuck

SilEv , || δ(f ∈ fmap)

ObsEv , || obs(fn ∈ string, args ∈ list Val, v ∈ Val)

Trace
coind
= || (e ∈ SilEv ]ObsEv) :: (tr ∈ Trace) || Term (r ∈ R) || Error

Behavior
coind
= || (o ∈ ObsEv) :: (tr ∈ Behavior)
|| Diverge || Term (r ∈ R) || Error

FairTr ∈ P(Trace) , { tr | ∀i ∈ ID.FairTri(tr) }
FairTri∈ID ∈ P(Trace) , νX. µY. νZ. λtr. //X, Y, Z ∈ P(Trace)
match tr with || Term r⇒⇒> || Error⇒⇒>

|| obs(fn, args, v) :: tl ⇒⇒Z(tl)
|| δ(f) :: tl⇒⇒
match f(i) with || ε ⇒⇒Z(tl) //Z: inner coinductive

|| bad ⇒⇒Y (tl) //Y : middle inductive
|| good ⇒⇒X(tl) //X: outer coinductive

Figure 2.3 Core definitions of the language FL, behavior, and fair trace.

PICK, and Obs, in addition to ret for termination and an explicit stuck to

indicate an error, i.e., undefined behavior. The fairness constructor FAIR invokes

fairness events via the fairness map fmap. fmap’s range is flag, which now

includes ε to express that the fairness event is undefined for that index (usually

omitted for brevity). PICK non-deterministically picks a value from any given

set X, passing it to the continuation. Finally, Obs invokes an observable effect,

e.g., a system call, represented by a function name fn and arguments args,

and passes the return value to the continuation. Terms in FL within the Coq

development are defined using interaction trees [32], as opposed to directly

embedded as Coq functions. This allows us to reuse programming constructs

such as match . . . with for branches, x← p; k,>>= for monadic bind, and loop

for loops, thereby keeping our language minimal yet expressive.

The semantics of an FL program p is defined by the set of its possible be-

haviors Beh(p). For this, we first derive a set of possible traces from a program
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where a trace is a stream of silent (δ) or observable (obs) events and can possibly

terminate with a return value or an error. The language construct FAIR(f) emits

δ(f), PICK emits δ([ 7→ ε]), Obs emits corresponding obs, and ret(r)/stuck ter-

minates the trace correspondingly. Then, a behavior is defined as an observable

summary of a trace in the sense that it drops all silent events and leaves only

observable events. An infinite trace with only silent events results in a silent

divergence [21].

Now, for a set of traces, we derive a set of behaviors by (i) filtering out

unfair traces with help from δs, and (ii) erasing the now meaningless δs. A fair

trace, defined by FairTr, is a trace that satisfies FairTri for every index i in ID.

FairTri allows only finite bads until the next good for i, captured by the mixed

coinductive-inductive-coinductive definition: the inner coinductive (Z) captures

the possibly infinite fairness-irrelevant trace, the middle inductive (Y ) ensures

only finite bads are encountered until a good, which can appear infinitely as

expressed by the outer coinductive (X).

Then whole-program refinement between two FL programs pt and ps is de-

fined as follows:

pt v ps , Beh(pt) ⊆ Beh(ps)

v is transitive, reflexive, and preserves termination (i.e., if the target has (fair)

divergence, so does the source). Note that the source and the target may have

different IDs.

2.4.2 Simulation Relation

The simulation (.) presented in §2.2.2 is formalized in Fig. 2.4, which relates

two FL programs. The rules are identical except that cmap is now parameterized

over ID, the set of fairness indices, and C<, a well-founded order.2 Expectedly,

the simulation satisfies the following adequacy theorem:

2We omit ID and C< for brevity whenever they are clear from the context.
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cmapID, C< ∈ ID→ C< < ∈ P(C< × C<) is well-founded

c ↪→f c′ ∈ P(cmap× fmap× cmap) , ∀i ∈ ID.
match f(i) with || good ⇒⇒ > || bad ⇒⇒ c′(i) < c(i) || ε ⇒⇒ c′(i) = c(i)

. ∈ P((cmap× FL)× (cmap× FL))

simret
rt = rs

(ct, ret rt) . (cs, ret rs)

simstuck

T . (c, stuck)

simpt
∀x ∈ X. (c, k(x)) . S

(c, PICK(X) >>= k) . S

simps
∃x ∈ X. T . (c, k(x))

T . (c, PICK(X) >>= k)

simft
∀c′ ∈ cmap. (c ↪→f c′) → (c′, k()) . S

(c, FAIR(f) >>= k) . S

simfs
∃c′ ∈ cmap. (c ↪→f c′) ∧ T . (c′, k())

T . (c, FAIR(f) >>= k)

Figure 2.4 Definitions of cmap and selected rules of our simulation relation .
(slightly simplified).

Theorem 2.4.1 (Adequacy) For a pair of programs pt, ps and a well-founded
set C<, we have:

(∀ct ∈ cmap(IDt,N). ∃cs ∈ cmap(IDs, S<). (ct, pt) . (cs, ps)) =⇒ pt v ps

2.5 Formalizing Fair Concurrency

In this section, we present the formal definitions of our model of concurrency

and scheduler fairness following the ideas in §2.3.1, and show that a simple

round-robin scheduler satisfies scheduler fairness.

2.5.1 Semantics of Concurrency

In this paper, concurrency is modeled by interleaving semantics with thread-

yields, meaning that the scheduler interleaves the execution of the threads and

each thread yields to the scheduler. To write concurrent programs, we define

the thread language TFL and the scheduler language SFL. Then threads and a

scheduler are together interpreted as a FL program, so the semantics (behavior)

of a concurrent system (threads and a scheduler) is naturally defined by the

semantics of FL (Fig. 2.5).
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th , N R, ST : Type TPoolID, R, ST , th fin−⇀ TFLID, R, ST

Sch ∈ schedulerR , (th × Fin(th))→ SFLR

TFLID, R, ST
coind
= ||

b
>>= (k ∈ ()→ TFL) || GetTid >>= (k ∈ th → TFL)

|| Put(st ∈ ST) >>= (k ∈ ()→ TFL) || Get >>= (k ∈ ST→ TFL)
|| FAIR(f) >>= k || PICK(X) >>= k || Obs(...) >>= k
|| ret r || stuck

SFLID=th, R
coind
= || Exec(n ∈ th) >>= (k ∈ R?→ SFL) || FAIR(f) >>= k || ...

RY , || N(r ∈ R) || Y(t ∈ TFL)

TI(n ∈ th, t ∈ TFL, st ∈ ST) ∈ FLID, RY×ST ,
match t with || ... || ret r ⇒⇒ ret (N r, st)
||

b
>>= k ⇒⇒ ret (Y k(), st)

|| GetTid >>= k ⇒⇒ TI(n, k(n), st)
|| Put(st′) >>= k ⇒⇒ TI(n, k(), st′)
|| Get >>= k ⇒⇒ TI(n, k(st), st)

CI(P, Sch, st) , SI(P, Sch(0, dom(P ) \ {0}), st)
SI(P ∈ TPool, S ∈ SFL, st ∈ ST) ∈ FL ,
match S with || ... || ret r ⇒⇒ ret r
|| Exec(n) >>= k ⇒⇒ match P (n) with || None ⇒⇒ stuck

|| Some t ⇒⇒ x←TI(n, t, st); match x with

|| N r, st′ ⇒⇒ SI(P [n 6 7→], k(Some r), st′)
|| Y tk, st′ ⇒⇒ SI(P [n 7→ tk], k(None), st′)

Figure 2.5 Definitions of the thread/scheduler language TFL/SFL and the inter-
preters CI, SI, TI.
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Threads. We define a thread as a procedure in TFL, and a thread pool as a

finite map from thread ids to TFL. TFL extends FL with shared states among

threads (e.g., memory) and concurrency features. The state ST is parameterized

for flexibility, and TFL defines the Get/Put constructors to handle shared state.

TFL also has constructors for concurrency,
b

(Yield) and GetTid:
b

enables a

thread to yield to the scheduler, and GetTid returns the thread id of the current

thread.

Scheduler. We define a scheduler as a program in SFL, parameterized by the

initial thread id and a finite set of thread ids, Fin(th). SFL extends FL with

the Exec(n) constructor, which executes the thread with id n. When a thread

executes, it proceeds until it yields with
b

or terminates with ret, upon which

control is returned to the scheduler; this process repeats until the thread pool

is empty (or a thread gets stuck). One advantage of modeling the scheduler as

a program is that we can implement various scheduling policies in SFL, and we

can fix an ideal fair scheduler for an operational spec of fair schedulers.

Interpreting Concurrency. A concurrent system is interpreted into a FL

program by the scheduler interpreter SI and the thread interpreter TI. The

interpreters leave the common constructors (FAIR, PICK, Obs) as they are and

only interpret the added constructors, such as Get, Put, and
b

. We focus on

the most important detail: how the thread interleavings are realized by the

interpreters.

The thread interpreter TI enables thread interleaving using the decorated

return type RY. It is a disjoint union of two cases, (i) termination with a value

r (N r) and (ii) yield with a continuation t (Y t). By distinguishing the two

cases, the scheduler can correctly update the thread pool, as described in the

interpreting rule for Exec(n) in SI: First, the scheduler executes thread n and

waits for it to yield, which returns a decorated value in RY together with an
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FAIRSch(n ∈ th, ths ∈ Fin(th)) ∈ SFL ,
loop { x← Exec(n); match x with //L1
|| None ⇒⇒ n′← PICK({m | m ∈ ths ∪ {n}}); //L2

ths′ := ths ∪ {n} \ {n′}; //L3
FAIR([n′ 7→ good, ths′ 7→ bad]); //L4
n := n′; ths := ths′; //L5

|| Some r ⇒⇒ if ths = ∅ then ret r //L6
else n′← PICK({m | m ∈ ths}); //L7
ths′ := ths \ {n′}; //L8
FAIR([n′ 7→ good, ths′ 7→ bad]); //L9
n := n′; ths := ths′ } //L10

FIFOSch(n ∈ th, ths ∈ Fin(th)) ∈ SFL ,
q := set2queue(ths);
loop { x← Exec(n); match x with

|| None ⇒⇒ (n, q) := pop(push(n, q));
|| Some r ⇒⇒ if q = [] then ret r

else (n, q) := pop(q); }

set2queue ∈ Fin(th)→ queue th

pop ∈ queue A→ A× queue A
push ∈ A× queue A→ queue A

Figure 2.6 Definition of a spec of fair schedulers FAIRSch and a simple round-
robin scheduler FIFOSch.

updated shared state. Then the scheduler inspects the decorated value to (i) kick

out a terminated thread (N) or (ii) update the thread pool with the continuation

of the yielded thread (Y). Therefore, the scheduler tracks the continuation of

each thread, being able to interleave the execution of threads in the pool. All

in all, the concurrency interpreter CI interprets a concurrent system into a FL

program.

2.5.2 Scheduler Fairness, Operationally

Scheduler fairness guarantees that every thread eventually gets scheduled in-

finitely often. We define scheduler fairness operationally by defining a fair spec-

ification for a scheduler FAIRSch (Fig. 2.6), and say that a scheduler guarantees

scheduler fairness when it refines FAIRSch.

28



A Spec for Fair Schedulers. FAIRSch abstracts what one would expect

from a scheduler through nondeterminism (PICK) and mathematical sets: it is

a loop that terminates when all the threads have terminated (L6), executing a

single thread each iteration. What makes it an abstract and fair spec is the fact

that it schedules threads non-deterministically, hiding implementation details

such as queues (L2, L7); and ensures fairness by invoking bad for the unsched-

uled threads (L4, L9).

We now present our formalization of scheduler fairness:

Definition 2.5.1 (Scheduler Fairness) We say a scheduler Sch guarantees
scheduler fairness when IsFairSch (Sch) holds. IsFairSch is defined as fol-
lows:

IsFairSch(Sch) , ∀P st. CI(P, Sch, st) v CI(P, FAIRSch, st)

Example. To illustrate a concrete scheduler that guarantees scheduler fair-

ness, we present a simple round-robin scheduler FIFOSch (Fig. 2.6). This sched-

uler uses a queue to schedule the threads in a first-in-first-out manner. Since

every thread always gets scheduled after other threads in the thread pool get

scheduled, which happens only finitely many times, it is clear that this sched-

uler guarantees fairness. We formally establish such a guarantee using the above

definition:

Theorem 2.5.2 (FIFOSch is Fair) IsFairSch (FIFOSch) holds.

This theorem states that FIFOSch fairly refines FAIRSch, which corresponds

to fairness validation: we wish to show that FIFOSch satisfies the fairness re-

quirements set by FAIRSch using simulation. Thus the key rule application in

the proof of Theorem 2.5.2 becomes SIMFS presented in §2.2.3, and the main

challenge is to find a suitable value of c′ to update the fairness counter with. In

the case of FIFOSch, c′ can be set to the maximum number of threads, denoted

M : intuitively, the FIFO queue cannot contain more than M threads whenever

a thread is enqueued. Thus a thread scheduled via FIFOSch can only trigger
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OTFLID, R, ST
coind
=

|| Call(fn ∈ string, args ∈ list Val) >>= (k ∈ Val→ OTFL) || ...
M ∈ ModID, ST ,
{(init, funs) ∈ ST× (string fin−⇀ (list Val→ OTFLID, Val, ST))}

Config , th fin−⇀ (string× list Val) Load ∈ Config→ Mod→ TPool

.m ∈ P(Mod×Mod)

M1◦M2 ∈ ModID1+ID2, ST1×ST2 M1[M2] ∈ ModID1+ID2, ST1×ST2
M1◦M2 .m M2◦M1 M1 .m M2 →M◦M1 .m M◦M2

Mt .m Ms →Mc[Mt] .m Mc[Ms]

Figure 2.7 Definitions of our module system and properties of the module sim-
ulation.

less than M bad events within the proof before it gets scheduled and triggers

a good event: using M as the value of c′ when applying SIMFS captures this

intuition.

2.6 Module System and Fair Specs

For reusability and modularity, FOS provides a module system (Fig. 2.7) in-

spired by [8] that comprises (i) module type Mod, consisting of module-local

state and (possibly open) module functions, (ii) linking operation ◦ for mod-

ules, and (iii) close operation M1[M2] that closes open functions in a module M1

upon getting a module M2. Open module functions are written in OTFL, which

extends TFL with Call; the close operation M1[M2] interprets Call(fn, args)s

in M1 by substituting them with the corresponding TFLs in M2. Also, we define

a configuration Config, which maps each thread id to a function name and ar-

guments. Load takes a configuration and a module, initiates TFL for each thread

by the function name and arguments, and outputs a thread pool.

What underlies the power of modularization provided by our module system

is the module simulation .m. Module simulation requires the user to prove

thread-local simulation (see §2.7) for each pair of functions within the source-

target modules, and establishes the refinement. Since the module linking and

close operations respect .m (Fig. 2.7), this result implies contextual refinement.
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Theorem 2.6.1 (Adequacy of Module Simulation) For a pair of modules
Mt and Ms, if Mt .m Ms holds, then for any configuration p ∈ Config, refine-
ment under scheduler fairness holds:

CI(Load pMt, FAIRSch, Mt.init) v CI(Load pMs, FAIRSch, Ms.init)

2.6.1 Memory Modules and Memory Fairness

One key example of the module system is memory modules inspired by [28].

Defining memory models as modules grants us the flexibility required to in-

stantiate concurrent programs with different kinds of memory models, e.g.,

with a SC memory module or a weak memory module.

Then, as discussed in §2.3.1, one can prove that the ticket lock module

under either SC / weak memory refines the spec. However, proving that the

refinement holds under weak memory requires an extra fairness assumption:

memory fairness [15]. This is because, under weak memory, a value written

to memory must be propagated for other threads to read it (e.g., by a cache

coherence protocol)—which is not always guaranteed: a thread may never read

the most recent update under a buggy protocol, which may render a thread

unable to acquire a lock because it cannot read the most recent service value!

Memory systems that rule out such cases are said to guarantee memory fairness,

and threads eventually obtain newer values under memory fairness.

To model memory fairness in FOS, we develop a fair weak memory mod-

ule FWMM under view semantics, a “promise-free” fragment of the promising

semantics [13, 19] without fences, which can be also seen as a fragment of an

operational version of RC11 [16]3. In view semantics, each memory location has

a history of written values with timestamps. Each thread has its own view of

memory ; intuitively, the view points to the most recently propagated value to

that thread and increases monotonically following execution. A thread can only

read the same or newer values than its current view, and can write to memory

with newer timestamps than the current view. The following shows an example

3In the Coq development, we adopt the model developed in [3].
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memory view for some thread k and location X:

X : v0 v1 v2 v3 v4 v5 v6 ... vn
timestamp : t0 t1 t2 t3 t4 t5 t6 ... tn

In the figure, k’s current view for X is t2 and there are newer values that have

not yet propagated to k (t3 ˜ tn). When thread k accesses X, it can update its

timestamp to one of t2 to tn.

Based on the figure, we demonstrate how we encode memory fairness in

our model. Suppose that thread k reads from X, which resulted in updating

its timestamp at X from t2 to t4. At this moment, bad is invoked for every

unpropagated timestamp, i.e., FAIR({ti | 5 < i ≤ n} 7→ bad) is triggered. This

guarantees that every timestamp is eventually propagated to the thread k upon

continuous access to X since infinite continuous bad is unfair.

Returning to the ticket lock example from §2.3, we can prove that a ticket

lock refines ABSLock thanks to the fairness guarantee of FWMM:

Theorem 2.6.2 (TicketLock is Fair) TicketLockFWMM, a ticket lock module
under FWMM, is simulated by the spec ABSLock: TicketLockFWMM .m ABSLock.
Thus it contextually refines ABSLock.4

2.6.2 Expressing Various Concepts of Fairness

So far, we have demonstrated that FOS can model fair semantics of various sys-

tems, such as concurrency, library specifications, and memory models. However,

the expressiveness of FOS reaches much further, being capable of describing

various concepts of fairness proposed in the literature. We provide three exam-

ples, all assuming scheduler fairness: starvation/deadlock freedom, strong/weak

fairness, and readers-writers problem.

Starvation/Deadlock Freedom. Starvation/Deadlock free concurrent ob-

jects guarantee certain progress of threads accessing the object: starvation free-

4This ABSLock needs slight modifications from the one under an SC memory, since we need
to pass around the view. However, this detail is solely due to the view semantics, orthogonal
to our discussion regarding fairness.
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dom guarantees that every thread eventually makes progress, and deadlock free-

dom guarantees that some thread eventually makes progress [9]. We can express

these properties in FOS, as illustrated by the following (X++ is executed atom-

ically):

def incrmax() = ret X++
def incrmin() =
while(PICK(B)) { FAIR([α 7→ bad]);

b
; }

FAIR([α 7→ good]); ret X++
(INCR)

One can easily see that incrmax() guarantees starvation freedom, since any

thread calling it immediately returns. More interesting is incrmin(), which guar-

antees deadlock freedom by imposing fairness to single index α: if every callee

thread gets stuck in the loop, [α 7→ bad] accumulates indefinitely. Hence by

fair semantics, some thread will eventually get out of the loop, returning with

the wanted value. However, that thread invokes a [α 7→ good] before returning,

which resets the accumulated up bads; so other threads stuck in the loop are

not guaranteed to escape the loop.

Strong/Weak Fairness. Strong/Weak fairness is about progress of threads

under constraints: strong fairness guarantees that ”every thread that is enabled

infinitely often gets its turn infinitely often”, while weak fairness guarantees that

”every thread that is continuously enabled gets its turn infinitely often” [1]. In

general, this means that threads can make progress (cf. gets its turn) only when

some condition is satisfied (cf. enabled). Then, each constraint can be expressed

in FOS as the following (X-- is executed atomically):

def decrst() =
n = GetTid; W = W ∪ {n};
while(X ≤ 0) {

b
; }W = W \ {n};

FAIR([n 7→ good, W 7→ bad]); ret X--

def decrwk() =
while(X ≤ 0) {

b
; } ret X--

(DECR)

These functions guarantee that they (i) decrement X and return if some incre-

ment function (e.g., INCR) increments X to a nonnegative number, or (ii) loop

infinitely—they are enabled only when X > 0. Then it is easy to see that
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decrwk() guarantees weak fairness: if X > 0 remains true (e.g., the increment

function is always called in between) from some point, namely continuously

enabled, every thread escapes the loop and returns. However, if X becomes 0

infinitely often, the thread may not be able to escape the loop. On the other

hand, decrst() guarantees strong fairness: if X > 0 is true infinitely often (e.g.,

the increment function is called infinitely often), some thread escapes the loop,

decreasing X. The escaping thread also invokes [W 7→ bad] for the threads wait-

ing to get enabled, thereby ensuring that any waiting thread eventually gets

its turn. Note that ABSLock also guarantees strong fairness since the lock is

eventually acquired if it is freed infinitely often; one can observe that the codes

have a similar pattern.

The Readers-Writers Problem. The Readers-Writers problem is the prob-

lem of the mutual exclusion of several threads accessing a shared resource, where

”readers” share the resource with other readers and ”writers” require exclusive

access [4]. We simplify the problem to one in which there is a single shared lo-

cation X, where readers read from and writers increment. There are two kinds

of problems: Problem 1 states that readers should not be blocked unless a writer

is writing. Using FOS, we can specify an abstract spec that captures problem

1:

def read1() =
n = GetTid; R = R ∪ {n};
while(PICK(B)) { FAIR([n 7→ bad]);

b
; }

R = R \ {n}; FAIR([n, W 7→ good]); ret X

def write1() =
n = GetTid; W = W ∪ {n};
while(PICK(B)) { FAIR([n 7→ bad]);

b
; }

W = W \ {n}; FAIR([n, R 7→ good]); X++; ret

(P1)

The spec employs two sets to hold reader(R)/writer(W ) threads, and those

threads wait in a loop, invoking a bad for itself for each iteration. What makes

this spec interesting is the good events, each invoked by the opposite class; read-

ers invoke [W 7→ good] and writers invoke [R 7→ good]. Intuitively, this means
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that each class interrupts the other class from making progress, since a good

resets the bads. Therefore, if readers are holding the resource, every reader will

eventually make progress while any writers are blocked, and vice versa when a

writer is holding the resource.

On the other hand, problem 2 states that writers should write as soon as

possible. In other words, writers have priority over readers in accessing the re-

source. As with the previous case, we can specify an abstract spec that captures

problem 2:

def read2() =
n = GetTid; R = R ∪ {n};
while(PICK(B)) { FAIR([n 7→ bad]);

b
; }

R = R \ {n}; FAIR([n 7→ good]); ret X

def write2() =
FAIR([R 7→ good]); X++; ret

(P2)

This time, any writer should be able to write as soon as it wants, so it is

not blocked by anyone. However, readers can still be blocked by the writers;

thus all writers invoke [R 7→ good], where R is the set of blocked readers, to

reset the accumulated bads of the readers. Note that [27] specifies these kinds

of properties (some operations can prevent termination of others while other

operations do not) under the name “impedance”.

2.7 A Program Logic for Fairness

In this section, we present a more modular and abstract interface to the simu-

lation technique presented in §2.3, which we call Fairness Logic.

Fairness logic tackles two issues with the rudimentary simulation technique

presented in §2.3.2. First, while the rudimentary technique achieves mostly

thread-local reasoning by condensing all the needed “global” information in the

form of cmap, the cmap itself remains a global object and reasoning around it

remains global. Second, the proof of fair refinement often depends on conditions

on ghost variables as shown in §2.3.2.

Fairness logic addresses these issues with the help of separation logic. Mod-
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D(i ∈ ID, o ∈ Ordinal)

D-sep
D(i, o0 ⊕ o1) a` D(i, o0) ∗D(i, o1)

mono
(o ≥ o′) ∗D(i, o) ` ˙|VD(i, o′)

win-src
D(i, o) −∗ simI(Q, ks, kt)

simI(Q, FAIR([i 7→ good]); ks, kt)

lose-src
D(i, 1) ∗ simI(Q, ks, kt)

simI(Q, FAIR([i 7→ bad]); ks, kt)

Rules for source FAIR

�q∈(0, 1](i ∈ ID, n ∈ N) ♦(i ∈ ID) ♦th , ∀i. ♦(thi) �(i) , ∃n. �1(i, n)

�-sep
�q0+q1(i,min(n0, n1)) a` �q0(i, n0) ∗ �q1(i, n1)

dec
�q(i, n) ∗ ♦(i)

˙|V∃n′. �q(i, n′) ∗ (n′ < n)

lose-tgt
♦(i) −∗ simI(Q, ks, kt)

simI(Q, ks, FAIR([i 7→ bad]); kt)

win-tgt
�(i) ∗ (�(i) −∗ simI(Q, ks, kt))

simI(Q, ks, FAIR([i 7→ good]); kt)

Rules for target FAIR

yield-src

simI(Q, ks,
j

; kt)

simI(Q,
j

; ks,
j

; kt)

yield-tgt
b ∈ B

I ∗ (I −∗ �(thtid) ∗ (�(thtid) −∗ ♦th −∗ simI(Q, (b ?
j

: skip); ks, kt)))

simI(Q,
j

; ks,
j

; kt)

Rules for
b

Figure 2.8 Core rules of fairness logic.
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ern separation logic5 solves the first issue by allowing modular reasoning on

global state via the notion of ownership and ownership transfer. Separation

logic also allows one to introduce user-defined ghost variables conforming to cer-

tain protocols defined via the theory of Partial Commutative Monoids (PCM),

solving the second issue: our examples indeed reuse a large body of theory

previously developed around PCMs [11].

2.7.1 Core Rules of Fairness Logic

Core rules of fairness logic are presented in Fig. 2.8, comprising: rules for (i)

executing FAIR() in the source, (ii) executing FAIR() in the target, and (iii)

executing
b

.

Simulation Weakest Precondition A central notion in our rules is “simu-

lation weakest precondition” [6]: simI(Q, ks, kt) denotes the weakest precondi-

tion to simulate kt (target) against ks (source) with postcondition Q, under a

relational invariant I shared among threads. In the reasoning, one can rely on

that I holds when it receives control (i.e., at the beginning of the function and

after
b

) and should guarantee that I holds when it transfers control (i.e., at the

end of the function and before
b

). Our simulation weakest precondition satisfies

all the standard rules for simulation argument and weakest precondition, which

we omit here.

Rules for executing source FAIR We start by presenting the fairness as-

sertions used by the source rules. For the source fairness counters, we provide

D(i, o) denoting the right (or, ownership) to decrement the counter of id i by

an ordinal o: this assertion is local as it only concerns the id i instead of the

global cmap. Also, the D-SEP rule gives equivalence between D(i, o0 ⊕ o1) and

its decomposition D(i, o0)∗D(i, o1) where ⊕ is the natural sum [10] of ordinals.

Such a split resource can then be distributed across threads, ensuring local

5We use a non-step-indexed variant of Iris [12] resource algebra, developed in CCR [28].
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reasoning even when multiple threads are accessing the same i. D also enjoys

monotonicity on its second argument (MONO).

Now, the WIN-SRC rule says that one gets D(i, o) for o of its choice when

winning. Such a rule is designed with stress on usability: it does not require

any D as a precondition. This in turn means D in your frame remains valid

after the rule, and this is still sound because under the hood it increments the

counter by o, instead of setting it exactly into o. The LOSE-SRC rule says

that it consumes a right to decrement i by one, and actually decrements the

counter by one under the hood. Note how these rules together imposes fairness

validation as expected.

Rules for executing target FAIR Rules for executing target FAIR follow

a similar spirit to those for the source. Nonetheless, the rules are not exactly

symmetric because of a different nature between fairness validation and fairness

exploitation.

Fairness assertions that the target rules will use are twofold: (i) �q(i, n)

for an id i, a fraction q, and a natural number n denotes knowledge that the

counter for i is at most n and a fractional ownership q to execute good, and

(ii) ♦(i) for an id i denotes a “receipt” for decreasing the counter for i by one.

As before, we have a rule (�-SEP) decomposing � but with a twist: since n

does not refer to the value of the counter but instead means the upper bound

for the counter, n does not get split into two when splitting and we take the

minimum of the two ns when merging two �s. The most interesting rule in the

target side is the DEC rule, concerning fairness exploitation: it consumes

a � and a ♦ to produce a � with a decreased number. Such a rule coincides

with intuitive interpretation of � and ♦, and allows fairness exploitation since

a number cannot decrease indefinitely.

Now, the LOSE-TGT rule says that one gets ♦(i) when id i triggers a bad

event. Again, such a rule is designed with usability in mind: a direct, lower-level
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reasoning would dictate the exact counter value for i before/after execution, but

would not be ideal for local reasoning (e.g., when multiple threads trigger bad

events on the same id, some synchronization has to be made to track the latest

value). Here the rule requires nothing in the precondition: this is because it

does not need the exact value of i, but only the fact that a decrement has been

made. The WIN-TGT rule consumes the full fraction of � with any value n and

returns the full fraction of � with an unknown value n. Note the difference with

WIN-SRC: the counter value for i is updated to an unknown value, and the rule

contains the full fraction in the precondition, which is required for soundness.

Rules for executing
b

Finally, we give rules about executing
b

that are

capable of reasoning about scheduler fairness in a thread-local fashion.

The YIELD-SRC rule allows executing
b

in the source as if it is “skip”, in

the presence of the
b

in the target. Now, consider scheduler fairness: the rule

needs to somehow impose fairness validation regarding scheduler fairness events.

For this, instead of baking in WIN-SRC and LOSE-SRC rules into this rule as-is,

we give a much simpler yet expressive enough interface: following Simuliris [6],

we use an inductive-coinductive definition that allows using the YIELD-SRC

rule only finitely unless coinductive progress is made in the YIELD-TGT rule

(below). This allows, in the majority of verification scenarios, the user to com-

pletely ignore proof obligations regarding (scheduler) fairness validation.

On the other hand, the YIELD-TGT rule executes
b

in the target. When

b is false, it simply executes
b

on both sides in lock-step with the usual rely-

guarantee principle on I (it demands I to hold before and gives it back after).

When b is true, it just executes
b

in the target (keeping
b

in the source): this

flexibility is useful as it allows one to execute multiple target
b

s with a single

source
b

. Now, consider scheduler fairness. Recall that after the current thread,

tid, takes the control back, a fairness event for winning tid and losing everyone

else is invoked. The rule has applications of WIN-TGT and LOSE-TGT to this
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event baked-in, which appears as �(thtid) and ♦th . ♦th is simply a conjunction

of ♦ for all possible thread ids.

Adequacy Fairness logic satisfies the following two adequacy theorems.

Theorem 2.7.1 (Contextual Adequacy) For a pair of module Mt, Ms, and
a relational invariant I, if the initial states of the modules satisfy I, we have:

(∀ tid f v. I ∗ �(thtid) ` simI(I ∗ �(thtid), Ms.funs f v,Mt.funs f v)) =⇒
Mt.mMs

Here, I ∗ �(thtid) plays essentially the same rely-guarantee reasoning with the

YIELD-TGT rule.

Theorem 2.7.2 (Whole Program Adequacy) For a pair of modules Mt,
Ms, a relational invariant I, a whole-program configuration p ∈ Config, and
a precondition Ptid for each thread id tid, if the initial states of the modules
satisfy ∗tid∈dom(p) �(thtid) −∗ (I ∗∗tid∈dom(p) Ptid), we have:

(∀ tid f v. (p tid = (f, v)) ∗ I ∗ Ptid `
simI(I ∗ �(thtid), Ms.funs f v,Mt.funs f v))

=⇒
CI(Load pMt, FAIRSch, Mt.init) v CI(Load pMs, FAIRSch, Ms.init)

This theorem additionally allows each thread to have its precondition, Ptid, but

can only be used for whole-program refinement, not for contextual refinement.

We conclude this section with the following remark. While the fairness logic

contains only the minimal core rules, we are gathering confidence that it is

powerful enough to handle various interesting examples: our flagship example,

presented in the next section, involves non-trivial reasoning that spans multiple

different notions of fairness. We believe further abstract constructs [5] could be

derived on top of fairness logic and leave it as an interesting future work.

2.7.2 Example using the Fairness Logic

We demonstrate how the fairness logic is applied with a simplified but still

illustrative example. The example focuses on exploiting fairness; for the case

of validating fairness, we believe that the explanation in the previous section
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should be adequate for actual applications. This section assumes some familiar-

ity with modern separation logic, e.g., Iris [12], and uses the usual separation

logic predicates with minimal explanations.

To show how to use the fairness logic in proofs relying on exploiting fairness,

we inspect a simplified version of CLI, which assumes that memory access is

atomic and removes the locks:

b
; X := 42;

b
; do {

b
; x := X;

b
; } while (x = 0)

b
; print(x);

b
;

(SCLI)

This program refines CLS, and the reasoning underlying the proof is similar to

the one presented in §2.3.2: we construct a tuple that decreases throughout the

program execution and perform induction on it. However, with the power of

fairness logic, we can carry out the proof in a thread-local fashion—the most

interesting proof obligation now becomes constructing a shared invariant that

captures the rely-guarantee reasoning.

To begin with, we present an invariant one would set up, but without the

fairness assertions:

(X 7→0) ∨ (X 7→42 ∗ Ex)

where 7→ is the usual points-to and Ex is a token for exclusive ownership in

separation logic. This invariant states that the value stored in the memory

location X is either 0 or 42, and in the latter case it also holds the token Ex,

which means that thread 1 has written to X: thread 1 starts with Ex and hands

it over to the invariant right after the write to X. Unfortunately, this invariant

is too weak for the proof since it does not capture scheduler fairness; for the

while loop in thread 2 to always terminate, it should be guaranteed that thread

1 will eventually write 42 to X, which in turn relies on scheduler fairness.

This intuition is precisely captured with a fairness assertion �1(th1, n),

representing that the fairness counter for thread 1 (th1) is at most n. Then a
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correct invariant would be:

(X 7→0 ∗ ∃n. (�1(th1, n) ∗ =(n))) ∨ (X 7→42 ∗ Ex) (INV)

where =(n), together with ≤(m), are predicates for monotonicity satisfying the

following rules:

=(n) ` =(n) ∗ ≤(n), =(n) ∗ ≤(m) ` (n ≤ m), =(m) ∗ (n ≤ m) ` ˙|V=(n)

Intuitively, =(n) denotes the exact value of n, which can monotonically decrease,

and ≤(m) denotes that m is an upper bound of n [31]. Then INV states that the

value at X is either 0 or 42, and when it is 0, there is a value n that represents

how many times thread 1 can be starved by the scheduler (�1(th1, n)) and

monotonically decreases (=(n)).

With INV, we demonstrate the core of the proof that SCLI refines CLS—

that the while-loop in thread 2 always terminates. Let us focus on the following:

do {
j

; x := X;
j

; } while (x = 0)

For this piece of code, we stutter the source with the first
b

during simulation.

Then at x := X; , we destruct INV and get two cases: (i) X 7→ 42 case termi-

nates the loop by making the loop condition false, leaving (ii) X 7→0 case, with

a variable n, �1(th1, n), and =(n). In this case, we perform (strong) induc-

tion on n to conclude the proof, and we first obtain ≤(n) from =(n). Next, we

proceed to execute
b

using YIELD-TGT and obtain ♦th—note that thread 2

owns �(th2) from the start, and we can easily show the X 7→0 case to guaran-

tee the invariant INV. Then the loop iterates, almost bringing us to the state

satisfying the induction hypothesis (after a trivial application of YIELD-TGT).

This time, we have ≤(n) and ♦th along with INV, allowing us to finish the

induction: we can obtain n′ which satisfies n′ < n and the induction hypothesis.

After destructing the invariant, we again inspect the X 7→0 case, where it gives

a fresh variable m, �1(th1, m), and =(m). First, =(m) and ≤(n) gives m ≤ n
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and case analysis leaves us with m = n case since m < n case concludes the

induction. Next, substituting m with n, we apply DEC to �1(th1, n) and ♦th ,

obtaining �1(th1, n′) where n′ < n. Finally, after updating =(n) to =(n′), we

can conclude the induction since n′ < n.

This line of reasoning is seamlessly extended to a tuple instead of a single

value. To illustrate this, consider the following modification:

b
; skip;

b
; X := 42;

b
;

do {
b

; x := X;
b

; } while (x = 0)
b

;

print(x);
b

;
(SCL’I)

Because of the inserted skip, we now need to incorporate the number of re-

maining
b

s in thread 1, denoted l, into the induction (as we did in §2.3.2).

To encode l in the invariant, we use the usual authoritative assertions •(l) and

◦(l), satisfying the following rules [11]:

•(a) ∗ ◦(b) ` (a = b), •(a) ∗ ◦(b) ` ˙|V•(c) ∗ ◦(c)

Then an invariant for proving that SCL’I refines CLS is:

(X 7→0 ∗ ∃n, l. (�1(th1, n) ∗ •(l) ∗ =(l, n))) ∨ (X 7→42 ∗ Ex) (INV’)

The other half, ◦(l), is owned by thread 1 and tracks the number of remaining
b

s in thread 1. Using INV’, we can prove the goal with induction; we omit the

details, which is similar to the one above.

2.8 Case Study

Composing all of our results, we can prove the motivating example: CLI using

TicketLockFWMM and under FIFOSch refines CLS under FAIRSch. To state this,

we first wrap up each as a module, CLI, tk and CLS, which contains appropriate

functions and an initial state. Then we load the modules with a configuration

p that maps threads 1 and 2 to corresponding functions, and state the de-

sired refinement, which we prove by assembling the refinement results by the
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transitivity of refinement:

CI(Load p CLI, tk, FIFOSch, CLI, tk.init)

v CI(Load p CLI, tk, FAIRSch, CLI, tk.init)

v CI(Load p CLI, abs, FAIRSch, CLI, abs.init)

v CI(Load p CLS, FAIRSch, CLS.init)

where the first and second refinements are direct applications of Theorems 2.5.2

and 2.6.2. Theorem 2.6.2 and the final refinement are proved using fairness

logic (Theorems 2.7.1 and 2.7.2). Also, we remark that client-library modular

reasoning manifests itself in the application of Theorem 2.6.2 at the second

refinement. This result, including the whole theory of FOS, is fully mechanized

in Coq.

2.9 Related Work and Discussion

Various concepts of fairness have been studied within the literature, including

scheduler fairness [17, 20], progress properties for concurrent objects [9, 4, 23],

weak memory models [15], and model checking [1].

As shown throughout the paper, the definition of fairness described in Defi-

nition 2.2.1 is general enough to capture all of these concepts of fairness, which

in turn makes these concepts expressible in FOS. In this section, we describe

some pieces of previous work in more detail and compare the advantages (and

disadvantages) that FOS provides as a framework compared to existing work.

Progress Properties of Concurrent Programs. An interesting line of

work in establishing progress properties of a concurrent program is to prove

that a program refines some operational specification that encodes the desired

progress property [7]. A prime example is LiLi [22, 23], which provides a method

to express such specs, then allows users to prove that a program contextually

refines the spec (thereby ensuring that a progress property holds).
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However, the specs that LiLi provides do not express fairness directly, and

instead employ an explicit queue of definite actions within the semantics to cap-

ture the idea of fairness. LiLi also does not provide any machinery for verifying

clients that rely on fairness assumptions outside of scheduler fairness—and thus

cannot exploit fairness, as we have done in FOS.

[24] studies relations between all common progress properties and oper-

ational definitions, based on contextual refinements. They prove that each

progress property is equivalent to some specific type of contextual refinement

for linearizable objects. We believe that this approach can be applied to our

theory, such that proving contextual refinements can formally establish desired

progress properties, which we leave for future work.

Liveness and Temporal Logics. Fairness shares many similarities with live-

ness, which states that a ‘good thing’ must eventually happen at some point

during the execution of a program: for example, that a process must ‘get sched-

uled’ eventually. Such liveness properties are typically encoded via temporal

logics [26]—most prominently, linear temporal logic (LTL) [14]—which state

properties that an entire trace of a program execution must satisfy.

We note that while fairness and liveness are similar concepts with many

overlapping applications, the definition of fairness presented in this paper does

have differences with the standard notion of liveness: liveness requires that a

good event must happen, while with fairness, it is fine that a good event does

not occur as long as each fairness id only accumulates a finite number of bad

events.

Concurrent Separation Logic. Concurrrent separation logics [25, 2] extend

modern separation logics with the goal of proving safety properties of concurrent

programs. One notable feature of concurrent separation logics is that they focus

on thread-local and compositional reasoning, in order to reduce proof burdens.

45



One notable work in this area is TaDA-Live [5], which extends [27], a con-

current separation logic for verifying total correctness of client programs using

concurrent objects. TaDA-Live provides fairness-aware specifications of concur-

rent objects in the style of Hoare triples, and exploits scheduler fairness during

verification, with a focus on proving that a set of threads terminate under

scheduler fairness. Such termination proofs often rely on induction, where one

must identify a decreasing value to perform induction upon (such as the tu-

ple of values from §2.3). While abstracted away in this paper, identifying and

constructing these values presents the main challenge in FOS proofs; a major

contribution of TaDA-Live is that it provides a high degree of abstraction to

hide this complexity, providing users with a simple proof interface.

However, TaDA-Live cannot provide any guarantees for nonterminating pro-

grams: for example, TaDA-Live cannot be used to express progress properties

for programs that loop indefinitely. TaDA-Live is also only capable of unary

reasoning and cannot be used for proving refinement.

There has been work on proving termination-preserving refinement under a

fair scheduler using relational separation logic [29, 6]. However, such approaches

do not support reasoning about fairness directly, or exploiting fairness.
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초록

본 논문에서는 프로그램의 공정성(fairness) 성질들을 기술하고 프로그램 검증에

이용할 수 있도록 하는 것을 목적으로 하는 이론인 FOS를 제시한다. FOS는 Fair

Operational Semantics를 의미하고, 프로그램의 공정성 성질들을 실행 의미를 통

해표현하고이용할수있도록하는이론이다.공정성성질들은프로그램의실행에

있어서 나쁜 이벤트가 좋은 이벤트 없이 무한히 발생하지 않는다는 것을 나타낸

다. 이러한 공정성 성질들은 프로그램 검증에 있어 두 가지 중요성을 갖고 있다.

먼저, 공정성 성질들은 검증하고자 하는 프로그램에 대해 안정성 성질보다 더욱

정확한 스펙으로서 사용될 수 있다. 다음으로, 동시성 프로그램의 종료 성질 검증

등의 프로그램 검증은 많은 경우 공정성 성질들에 의존한다. 본 논문에서는 FOS

가 이 두 가지 경우 모두에 잘 사용될 수 있다는 것을 보인다. 구체적으로, FOS를

이용하여 다양한 공정성 성질들을 표현하는 스펙을 개발하고, 각 쓰레드를 개별로

고려해도 되는 증명 기법을 개발하고, 또한 이 기법을 이용하여 다양한 예시들을

검증한다.

주요어: 실행 의미, 동시성 프로그래밍, 공정성 성질, 프로그램 검증

학번: 2021-26995
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